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Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum
computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly
rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level
qudit systems with prime d. The codes use n ¼ d − 1 qudits and can detect up to ∼d=3 errors. We quantify
the performance of these codes for one approach to quantum computation known as magic-state
distillation. Unlike prior work, we find performance is always enhanced by increasing d.
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Quantum error correction stores information in a sub-
space of a larger physical Hilbert space and is an efficient
method of protecting quantum information from noise.
Repeated measurements and error corrections keep the
information from drifting too far out of the error-correction
subspace, also called the code space. For robust quantum
computation, we must be able to perform gates without
leaving a protected code space or amplifying existing errors.
Fault tolerance is straightforward for a limited set of gates,
the so-called transversal gates of the code. Unfortunately,
severe constraints exist [1–4], which means such direct
approaches cannot provide gates sufficient for universal
quantum computation. Rather, we must rely on additional
techniques to implement further fault-tolerant gates.
One route to universality is to prepare high-fidelity

resource states and then use state injection to convert the
resource state into a fault-tolerant gate [5–11]. Reduction of
noise in these resource states, sometimes known as magic
states [8], requires extensive distillation methods demand-
ing that the majority of a quantum computer is a dedicated
magic-state factory [12,13]. Because of the significant
resource overhead, maximizing efficiency of these proto-
cols is of paramount importance, and recently many
improvements have been made [14–16]. One could try
to circumvent this overhead by exploring one of many other
ways to achieve universality [17–23]. However, all these
proposals have to sacrifice some error-correcting capabil-
ities and so are only viable when physical operations are
much less noisy (such as was explicitly shown in Ref. [19]).
Except for Shor’s method [17], these alternative routes
require codes with a rare property, and such codes also
play a fundamental role in most magic-state distillation
(herein MSD) protocols. Specifically, these codes have as a
transversal gate theUπ=8 phase gate, which is special as it is
outside the Clifford group yet still closely related to it.
In almost every route to fault tolerance, these exotic

codes emerge as pivotal components. Here, we tackle the
problem of designing and improving analogous codes in

the qudit setting of using d-level elementary systems. In
this setting, qudit error correction [24–26] has been long
known, but only much later were analogs of Uπ=8 phase
gate characterized [27] and codes discovered with these
as transversal gates [28]. Campbell, Anwar, and Browne
(herein CAB) analyzed several quantifiers of performance
for magic-state distillation using these codes [28,29].
CAB found marked improvement over comparable qubit
codes for modest sizes d ¼ 3, 5. However, in even larger
dimensions (d > 5), performance again declined. This fall
in performance is peculiar, especially in light of other
results showing qudit toric codes have thresholds increas-
ing with system dimension [30–32]. Here we present MSD
protocols with commensurate improvements to thresholds
and, more importantly, an unexpected improvement to
efficiency that is not present in toric codes. Fault-tolerant
Clifford gates [33] can be provided by toric codes, and our
protocols extend this to a universal set of fault-tolerant
gates; with both components becoming more effective in
higher dimensions, they pose a powerful combination. Such
gains will also apply to qudit analogs of the “magic-state-
free” fault-tolerance schemes [18–23].
We consider an extended class of quantum Reed-Muller

codes that are constructed in terms of polynomial functions,
whereas the work of CAB only considered linear functions.
Here we see that higher degree polynomials can be used to
construct codes with the desired transversality properties.
Furthermore, the polynomial degree can grow with the
qudit dimension d, and, in turn, the effectiveness of the
code also grows. We make this statement more precise by
considering the code parameters conventionally labeled
⟦n; k; D⟧d, where n is the number of physical qudits, k is
the number of logical qudits encoded, and D is the code
distance (measuring its error correction capabilities). The
codes presented here encode a single logical qudit into
n ¼ d − 1 qudits, and our best-performing codes have
D ¼ ⌊ðdþ 1Þ=3⌋. It is desirable that D is larger and n
is smaller, but we find both numbers grow with system
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dimension. The overall effectiveness is measured by the
codes’ “gamma value,” γ ¼ logðnÞ= logðDÞ, which is
smaller for more efficient codes. We find γ can be decreased
arbitrarily close to unity by increasing d and discuss the
operational meaning of γ in the context of MSD. These
results are shown in Fig. 1, which discuss in detail later.
In summary, they show qudit protocols far ahead of the
first proposed qubit codes [8], and comparable with modern
qubit block codes [14–16] without the disadvantages
incurred by using block codes.
Aside from the practical merits, refinements to notation

and proof techniques present a clearer picture of why
these codes possess their strange properties. For technical
reasons, we consider only prime dimensions of five and
above. Extensions to prime power dimensions are plau-
sible, and new techniques offer hope in arbitrary dimen-
sions [38]. Our results also enhance our understanding
of qudit magic states as a resource theory. The study of
qudit systems benefits from neater phase space methods
[39] that are absent from qubit systems, and a growing
body of work shows a richer and more elegant resource
theory [34,35,40,41] than for qubits, with interesting
connections to quantum contextuality [42] and to sym-
metric informationally-complete measurements [36,43,44].
Definitions.—Qudits are d-level systems, and we label

computational basis states by elements of the set
Fd ¼ fj0i;…; jd − 1ig, and all arithmetic is performed
modulo d, so Fd forms a Galois field of order d. Let us
review the structure of the Clifford group denoted Cd
and a normal subgroup called the Pauli group denoted Pd,
both being fundamental to quantum coding theory. Those
Clifford unitaries that are also diagonal (in the standard
basis) have the form Zα;β ≔ ωαn̂þβn̂2 where α; β ∈ Fd,
throughout ω ¼ expði2π=dÞ, and we employ the number
operator n̂ ¼ P

xxjxihxj. Generally, the Clifford exponent

is quadratic in the number operator, but when linear, we
find Zα;0 is also in the Pauli group. In particular, Pauli Z is
Z1;0. There are also Clifford unitaries that permute the
computational basis states, such that Xα;βjxi ¼ jαþ βxi,
where again α, β ∈ Fd. Here, unit β picks out elements of
the Pauli group, in particular, Pauli X is X 1;1. The Pauli
operators X and Z and tensor products thereof generate the
whole Pauli group. Multiplication in modular arithmetic is
not always invertible, which we need for Xα;β to be unitary,
but thankfully, in prime dimensions we do have inverti-
bility. These gates are not yet sufficient to generate the
Clifford group, and we must also include a Hadamard-like
gate H that acts as Hjxi ¼ P

yω
xyjyi= ffiffiffi

d
p

and a two-qudit
control-phase gate of the form CZ ¼ ωn̂⊗n̂.
Non-Clifford gates.—As remarked earlier, the special

ingredient we need is a fault-tolerant implementation of a
gate outside of the Clifford group. The qubit Uπ=8 gate is
non-Clifford and has other useful properties. We consider
qudit analogs [27,28]. Such an analog will be diagonal
in the computational basis, non-Clifford, and will by
conjugation map Pauli operators to Clifford operators.
Such gates are often said to belong in the third level of
the Clifford hierarchy, and this property is useful for gate
teleportation [45]. We show these properties for unitaries
of the form Mμ ≔ ωμn̂3 for μ ¼ 1;…; d − 1. We could
include a quadratic component to the exponent, but the
unitary would be Clifford equivalent (for more insights on
Clifford equivalence, see Ref. [36] and the Supplemental
Material [37]). We find that

MμXM
†
μ ¼ Xωμ½ðn̂þ1Þ3−n̂3� ¼ Xωμð3n̂2þ3n̂þ1Þ ð1Þ

is Clifford and non-Pauli. It follows that Mμ is in the
third level of the Clifford hierarchy and so analogous to a
Uπ=8 gate (more details are available in the Supplemental
Material [37]). However, there are important differences
between qubits and higher d qudits. For instance, the qudit
non-Clifford gates are order d (so Md

μ ¼ 1), but the qubit
Uπ=8 is order 8 ¼ 23, which changes the proof of trans-
versality and ultimately leads to our improved performance.
The Reed-Muller codes.—Here we consider a simple

subclass of shortened quantum Reed-Muller codes
(herein QRM codes). The codes are defined in terms of
polynomial functions from the nonzero elements of the
field (F�

d ¼ f1;…; d − 1g) to the whole field, so formally
F∶F�

d → Fd. It is called a degree-r polynomial if

FðxÞ ¼ f0 þ
X

m¼1;…;r

fmxm; ð2Þ

with fr ≠ 0 and where lower case is used throughout for
the coefficients fk ∈ Fd. We also denote the degree as
degðFÞ. Fermat’s little theorem (FLT) asserts that xn ¼ xm

(mod d) if n ¼ m (mod d − 1), and so all functions can be
represented with polynomials of degree less than d − 1.
When higher degree polynomials appear, we equate them

(a)

(b)

(c)

FIG. 1 (color online). The performance of our QRM codes
at MSD. (a) The efficiency metric γ (the smaller the better) for
various prime d. (b) Two curves in which γ fluctuates between,
shown for much larger d (on a log scale). (c) The depolarizing
noise threshold below which the states are distillable. Raised
bars show the theoretical maxima where distillation becomes
impossible [34,35]. Where multiple maxima appear (see d ¼ 7),
not all magic states jMμi are equivalent (see Ref. [36] and the
Supplemental Material [37]).
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via FLT with the polynomial of lowest possible degree.
We say the function is shifted by f0 and unshifted when
f0 ¼ 0. We use these functions to describe quantum states,
so that

jψFi ¼ jFð1ÞijFð2Þi…jFðd − 2ÞijFðd − 1Þi: ð3Þ

For example, jψFðxÞ¼xi ¼ j1ij2i…jd − 1i. The code space
of such QRM codes is defined by its degree, r. We begin
by defining the logical states jkLi as

jkLi ¼ d−r=2
X

degðFÞ≤r
f0¼k

jψFi; ð4Þ

which is an equally weighted sum over all jψFi, where F is
a k-shifted function of degree no greater than r. For the j0Li
state, the functions are unshifted.
Alternatively,QRM codes can be described in the qudit

stabilizer formalism [46,47]. If a Pauli operator s satisfies
sjkLi ¼ jkLi for all k, we say that s is an element of the
code stabilizer S. We proceed by defining Pauli operators

XF ¼ XFð1Þ ⊗ XFð2Þ ⊗ � � � ⊗ XFðd−1Þ ð5Þ
and noting XFjψGi ¼ jψFþGi. One can then verify that the
code space is stabilized by XF for all unshifted functions of
degree no greater than r. Similarly, the stabilizer contains
operators ZF, as we find later when discussing code
distance. In terms of logical operators, we observe that
since X⊗ðd−1ÞjψFi ¼ jψFþ1i, we have X⊗ðd−1ÞjkLi ¼
jðkþ 1ÞLi and can identify X̄ ¼ X⊗ðd−1Þ where bars
throughout denote logical operators.
Transversal gates.—The key feature of QRM codes

that makes them useful for fault-tolerant quantum comput-
ing is that they possess transversal non-Clifford gates.
That is, one can perform a logical non-Clifford single qudit
gate within the code space by applying a product unitary.
We shall show that for QRM codes of degree 3r < d − 1,
a logical Mμ gate can be implemented transversely by

M̄μ ¼ M⊗ðd−1Þ
−μ . We begin by considering some polynomial

F, the corresponding state jψFi, and how the product
unitary acts on this,

M̄μjψFi ¼ ω−μ
P

d−1
x¼1

FðxÞ3 jψFi ¼ ω−μSðHÞjψFi; ð6Þ

where we introduce the shorthand SðHÞ ≔ P
d−1
x¼1HðxÞ

and HðxÞ≔FðxÞ3, and next we must evaluate SðHÞ. The
following steps all rest on a remarkable algebraic feature
of prime numbers, namely, that all functions satisfy
SðHÞ ¼ −h0 (see the Supplemental Material [37]). Now
we must find the explicit form for h0 in terms of the fm. By
expanding out F3 and using FLT, we find h0 is a sum over
every fm1

fm2
fm3

where m1 þm2 þm3 ¼ 0 (mod d − 1).
This is hugely simplified if we restrict to F with degree
less than ðd − 1Þ=3, as there is only one contribution so

that h0 ¼ f30. Under this assumption, Eq. (6) becomes
simply M̄μjψFi ¼ ω−μf3

0 jψFi, and so the phase depends
only on the shift of the function.
In Reed-Muller codes, the logical basis states jkLi are a

sum over polynomials shifted by k. For QRM codes
of degree r < ðd − 1Þ=3, these polynomials have degree
of r or less, and so the above proof directly entails
M̄μjkLi ¼ ω−μk3 jkLi. This shows that the product unitary
acts on the QRM code words as a logicalMμ gate, and so
transversality of a non-Clifford gate has been demonstrated.
Error-correcting properties.—The previous work of

CAB [28] used different proof techniques to show the
transversality of non-Clifford gates for QRM codes of
only first degree. Furthermore, those first degree codes
could only detect a single error. However, increasing the
degree of QRM codes opens the possibility of detecting
more errors. Indeed, we will show below thatQRM codes
of degree r can detect up to r errors.
We first review some basic concepts. The weight of an

operator P denoted wtðPÞ is the number of qudits it acts
upon nontrivially. We are interested in the smallest-weight
Pauli operator whose effects cannot be detected by meas-
uring stabilizers of the code and that also acts nontrivially
on the code. Formally, Pmust commute with S, but not be a
member of S, and the minimum weight of such P is called
the code distance,

D ¼ minfwtðPÞj½P;S� ¼ 0; P ∉ S; P ∈ Pg: ð7Þ

We begin by considering only phase errors and
again use polynomials to define multiqudit operators,
so ZG ¼⊗x ZGðxÞ. The weight of ZG can be expressed
as wtðZGÞ ¼ ðd − 1Þ − χðGÞ, where χðGÞ is the number
of nonzero arguments for which the function G evaluates
to zero. That is, χðGÞ is the number of distinct nonzero
roots of the polynomial. The roots are limited by the
degree of the polynomial such that χðGÞ ≤ degðGÞ.
Putting this together, we have the degree-weight relation
wtðZGÞ ≥ ðd − 1Þ − degðGÞ. Next, we show that commu-
tation of ZG with the stabilizer puts an upper bound
on degðGÞ.
Recall that the stabilizers of QRM codes include

operators XF for all unshifted functions with degðFÞ ≤ r.
From ZX ¼ ωXZ, we know that XF and ZG commute iffP

x∈F�d
FðxÞGðxÞ ¼ 0. Recall that such sums only vanish

when the composite polynomial, here H0ðxÞ ≔ FðxÞGðxÞ,
is unshifted. The shift of H0 is h00, which by expanding FG
is a sum over every fmgn such thatmþ n ¼ 0 (mod d − 1).
Let us just consider monomials FðxÞ ¼ xq, then we have
the simplification h00 ¼ fqgðd−1Þ−q ¼ gðd−1Þ−q. By defini-
tion, a degree r polynomial has gr ≠ 0, and so h00 ≠ 0

whenever q ¼ ðd − 1Þ − degðGÞ. Since q ¼ degðFÞ ≤ r,
we conclude that provided ðd − 1Þ − r ≤ degðGÞ, we can
always find an unshifted F [with degðFÞ ≤ r] such that FG
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is shifted. This entails that the corresponding ZG fails to
commute with at least one element of the stabilizer, namely,
XF. Conversely, for a ZG error to commute with the
stabilizer, it must have degree less than ðd − 1Þ − r, and
from the degree-weight relation, this entails wtðZGÞ > r.
Being true for all ZG entails all undetectable phase errors
haveweight greater than r. As forX errors, a similar analysis
shows even greater protection. We conclude that the
code distance satisfies D ≥ rþ 1, with equality being
easy to confirm.
MSD.—We have shown transversal non-Clifford gates

for QRM codes of up to degree, r ¼ ⌊ðd − 2Þ=3⌋, and
so a distance D ¼ ⌊ðdþ 1Þ=3⌋ that grows linearly. This
result implies increasing code performance with increas-
ing dimensionality. To make this concrete, let us consider
the performance when using these codes for MSD. Each
round of distillation consumes (d − 1) noisy copies of
M−μjþi and, when successful, outputs a purer magic state.
To briefly review, a simple distillation protocol will
take noisy magic states, measure the code stabilizers,
and postselect on all “þ1” outcomes. This projects onto
the code space. Next, we perform jkLi → jkij0i…j0i,
outputting the first qudit. The role of transversality of Mμ

is the following: it commutes with the code projection
allowing us to instead consider the action of the projector
onto (independently) noisy jþi states and consequently
directly detect errors therein. We expand on this last point.
The Z-basis measurements will project noisy jþi states
into the code space, allowing the X-basis measurements
to detect phase errors. Consequently, the state is output
with an infidelity ϵ0 ¼ OðϵDÞ, where D is the code
distance, as analyzed in detail in Refs. [8,28]. The above
argument gives sufficient conditions for a code being
useful for MSD. Codes without the desired transversality
might, via a different mechanism, achieve MSD, but the
performance is no longer linked to code distance. For
instance, MSD can be based on the five-qubit code [8] or
Steane code [9] and, respectively, reduces errors quad-
ratically ϵ0 ¼ Oðϵ2Þ and linearly ϵ0 ¼ OðϵÞ, though both
codes have D ¼ 3. Only the X-basis measurement detects
errors, whereas the Z-basis measurements are entirely
random. Prior work [8,14,28] shows that all Z-basis
measurements’ outcomes can be accepted providing a
success probability approaching unity as ϵ → 0.
We now discuss the efficiency and noise threshold of

MSD with the high degree QRM codes. The average
number of consumed noisy states can be shown [28] to
scale as ClogγðϵfinalÞ where γ ¼ logDðd − 1Þ. Therefore, γ
quantifies the efficiency for MSD, with lower γ showing
better performance. Using the optimal D ¼ ⌊ðdþ 1Þ=3⌋,
we find γ slowly approaches 1 from above. Previously
proposed qudit codes were first degree QRM codes (with
distance 2) and though CAB observed improved γ for
d ¼ 5, this was followed by impoverished γ at greater d,
whereas here, γ continues to improve with growing d.

In the qubit setting, the 15-qubit code achieves γ ¼ 2.465.
However, recent improvements in qubit MSD have used
block codes [14,15] that achieve γ → 1.585 (the Bravyi-
Haah limit) and multilevel distillation [16] where numerics
indicate γ → 1. However, multilevel distillation requires
very many magic states to be simultaneously prepared and
cannot be used in conjunction with further resource-saving
methods that store nosier magic states within smaller codes.
One detailed study of multilevel distillation concluded that
the benefits are slight compared to the 15-qubit code [48].
In contrast, higher-dimensional systems offer efficient
protocols even for preparation of a single magic state,
avoiding the complexity of multilevel or block protocols.
Though very large d is needed for our protocols to get γ
close to unity (see Fig. 1), modest d is sufficient to
outperform qubit protocols.
Another important figure of merit for MSD is the noise

threshold below which the protocol successfully reduces
noise. The threshold depends on the noise model, and
here we consider depolarizing noise such that Mμjþi is
mixed with the identity to give a state ρ with fidelity
hþjM†

μρMμjþi ¼ 1 − ϵ. After a distillation round, the
output is still depolarized with improved fidelity provided
ϵ < ϵ�. For prime d ≤ 17, we have numerically found ϵ�
shown in Fig. 1(c) and observed increasing improvements
with d. There is a monotonic improvement in both thresh-
old and γ within the two classes of odd numbers, d ¼ 1
(mod 3) versus d ¼ 2 (mod 3). Jumps occur because
the code distance only increases when d increases by 3
or more. Compared to qudit toric code thresholds, these
distillation thresholds are consistently higher, and we
exceed ϵ�dep ¼ 0.5 even with d ¼ 11, while toric codes
only approach 0.5 in the large d limit. Even so, there
remains potential room for improvement in MSD thresh-
olds, though even in the qubit case, studying the maximum
possible threshold is notoriously difficult [49].
Conclusions.—In summary, we have shown that quan-

tum Reed-Muller codes provide effective means of fault-
tolerantly implementing gates that are essential to various
approaches to quantum computing, with special attention
paid to MSD. Further study is warranted of the benefits
for qudit variants of non-MSD approaches to quantum
computing [18–23], though the relative merits of these
proposals is still poorly understood. Unlike previous work,
improvements in efficiency and thresholds continue to
increase with d. Comparable threshold improvements are
seen in qudit toric code, but improved efficiency does not
occur in the toric code context, and so this is the more
surprising result. We must remark that coherent control of
high d qudits is challenging, and in physical systems one
may also see noise rise with d. Such features depend subtly
on the details of the underlying physics. While many
systems may not be well suited to qudit approaches, many
atomic systems come equipped with large Hilbert spaces
for which control of many levels need not be substantially
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more difficult than control of just two levels. For instance,
experiments in trapped cesium have performed gates
between 16 levels at 99% fidelity [50].
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