Using 100 TW laser pulses, we demonstrate that laser-induced nanometric particle generation in air increases much faster than the beam-averaged incident intensity. This increase is due to a contribution from the photon bath, which adds up with the previously identified one from the filaments and becomes dominant above 550 GW/cm2. It appears related to ozone formation via multiphotondissociation of the oxygen molecules and demonstrates the critical need for further increasing the laser energy in view of macroscopic effects in laser-induced condensation.