We have investigated resonant Auger decay of xenon following photoexcitation of each of the three L edges under resonant-Raman conditions, which allowed us to characterize several higher Rydberg transitions. Relative intensities for spectator final states reached after L1−, L2−, and L3-edge excitations are studied in detail. Thanks to state-of-the-art experimental arrangements, our results not only reproduce the previously calculated 3d−25d and nd(n>5) state cross sections after L3 excitation, but also allow extracting the 3d−26d spectator state energy position and revealing its resonant behavior, blurred by the insufficient experimental resolution in previous data sets. The 3d−26p and 3d−27p states reached after L1 excitation as well as the 3d−25d and 3d−26d states reached after L2 excitation are also investigated and their relative intensities are reported and compared to ab initio Dirac-Hartree-Fock configuration-interaction calculations. We found the signature of electronic- state-lifetime interference effects between several coherently excited intermediate states, due to large lifetime broadening. Electron recapture processes are also identified above all three photoionization thresholds.