Die vorliegende Dissertation untersucht die Seespiegelschwankungen des Heihai. Dafür wurden morphologische und sedimentologische Arbeiten an den Hochstandssedimenten des Sees durchgeführt und deren Ergebnisse, mit Hilfe eines Bohrkern aus der Mitte des Sees, in einen chronostratigraphischen Kontext gestellt. Der tiefste Seespiegel konnte zwischen -17 bis -18 m verortet werden und geht vermutlich auf das Spätglazial/Frühholozän zurück. Das höchste Niveau erreichte der See in der ersten Hälfte des Holozäns mit einer Höhe von +5 bis +15 m oberhalb des heutigen Stands. Die heute teils periglazial überprägte Hochstandsfläche konnte mit Hilfe einer Hot-Spot- Analyse in Hebungs- und Absenkungsbereiche unterteilt werden. In den weichen Hochstandsablagerungen hinterließ der See morphologische Spuren, die zu vier weiteren Seespiegelständen zusammengesetzt wurden (S1/T0 = +0,3 m, T1 = +1,1 m, T2 = +2,2 m, T3 = +3,2 m). Ein Vergleich von Fernerkundungsdaten der letzten 40 Jahre zeigte, dass der exorheische Heihai nach einem Starkregenereignis (2010), maximal das Level der T1 erreichen konnte, ansonsten jedoch ein stabiles Gleichgewichtsniveau einnahm. Um die Prozessdynamik, die während und im Anschluss an den Hochstand herrschte, abbilden zu können, wurde die geochemische Zusammensetzung der Hochstandssedimente mittels einer Faktorenanalyse analysiert. Da sich in den Profilen jedoch unterschiedliche Ablagerungsmilieus mischten, wurden die Sedimente zuerst mit einer Clusteranalyse in dominante Korngrößenklassen aus lakustrinen Schluffe und terrestrischen Sanden getrennt. Mineralbestimmungen mittels XRD-Analyse deckten singuläre Mineralbildungen auf, die die Elementkorrelation beeinflussten. Nach Entfernung der halithaltigen Proben aus dem Datensatz ergaben sich bei der Faktorenanalyse der Elementdaten aus den lakustrinen Ablagerungen Faktoren, die stellvertretend für die Ab- und Umlagerungsprozesse im See stehen. Der Heihai weist einen der höchsten bekannten modernen Reservoireffekte auf dem Qinghai-Tibet-Plateau auf (6.465 ± 75 14C-Jahre). Dieser war im Laufe der Ablagerungsgeschichte jedoch starken Schwankungen unterworfen, welche größtenteils an den Eintrag exogener Karbonate gebunden waren. Während in der ersten Phase der Seeentwicklung alter Kohlenstoff durch den Zufluss aus einem Kalksteineinzugsgebiet in den See gelangte, war es in der Folge die Remobilisierung der kalzithaltigen Hochstandssedimente, die der Reservoireffekt dominierten. Die terrestrischen Sandablagerungen, die in den Hochstandssedimenten gefunden wurden, konnten als Markerhorizont verwendet werden und weisen auf eine Trockenperiode im Einzugsgebiet des Sees hin. Diese Trockenphase kann um 3,5 ka BP angenommen werden und stellt die zeitliche Mindestgrenze für die Hauptphase der Seeentwicklung dar. Diese fiel vermutlich mit der Ausbildung von Monohydrokalzit im Kern zusammen, was den Höchststand stratigraphisch auf ein Alter zwischen 4875 ± 1650 und 8.360 ± 1.650 cal a BP begrenzt.
This thesis examines lake level variations in the Heihai lake system (Northern Tibetan Plateau). These changes were derived from landforms and sediments along the littoral zone of the lake. In addition an age-depth-model from a piston long core from the deepest part of the lake was established to put the results in a chronostratigrapical context. The deepest terrace generation dates from the Late Glacial to Early Holocene and was identified between -17 to -18 m below the modern lake level. The highest reconstructable lake stand was established in the first part of the Holocene at a height +5 to +15 m above the modern level. The high uncertainty in the estimation was caused by periglacial uplift that overprinted the former depositional height. These uplifted areas were revealed by hot spot analysis in combination with a detailed littoral mapping approach. Inside the soft sediments of the highstand, different terrace levels could be identified, indicating four lake stages at +0,3 m (S1/T0), +1,1 m (T1), +2,2 m (T2) and +3,2 m (T3) above the modern lake level. Thereby the level T1 was associated with an extreme rainfall event in 2010. Apart from that, the exogenous Heihai had remained constant for at least the last 40 years. The sediments around the lake were sampled in eight profiles and can be divided into two dominant grain size classes (lacustrine silt and terrestrial sand). The mineral content was analyzed on the basis of XRD measurements, revealing isolated minerals which influenced the elemental correlation within the deposits. After removal of the halite-bearing samples, a factor analysis was performed, indicating processes of internal carbonate production, sediment mixing and periglacial weathering activity. Lake Heihai shows one of the highest known modern reservoir effects on the Tibetan Plateau (6.465 ± 75 14C years). However this effect was not constant over time and fluctuated depending on the input of exogenic carbonate from the catchment. During the first period of lake development, dead carbon from a carbonate-bearing catchment had a massive impact on the reservoir effect. Thereafter the remobilisation of calcite leached out from the former highstand sediments led to a homogenization of 14C-ages. The terrestrial sand layers from the highstand sediments were linked to a period of aridity in the catchment at about 3,5 ka BP. On the basis of a process and provenance genetic age-depth-model, the calibrated age of the highest lake level at Lake Heihai was limited to between 4875 ± 1650 and 8.360 ± 1.650 cal a BP.