Die mediale vaskuläre Kalzifizierung, auch Arteriosklerose genannt, spielt eine wichtige Rolle bei der Entstehung von Herz-Kreislauf-Erkrankungen. Sie tritt gehäuft bei Patienten mit chronischen Nierenerkrankungen auf, wo sie mit einer deutlich erhöhten Morbidität und Mortalität assoziiert ist. Entgegen früheren Ansichten handelt es sich um einen aktiv regulierten Prozess, welcher durch verschiedene Faktoren beeinflusst wird. Ein bislang wenig untersuchter Faktor ist die Rolle des Endothels. Zur Erforschung der Gefäßverkalkung stehen mehrere in vitro-, ex vivo- und in vivo-Modelle zur Verfügung, in welchen mit unterschiedlichen Methoden eine vaskuläre Kalzifizierung induziert wird. Jedoch weist jedes der bestehenden Modelle gewissen Nachteile auf. Ziel dieser Arbeit war die Entwicklung und Etablierung eines neuartigen physiologischen ex vivo-Modells: Der Isoliert perfundierten Aorta (IPA). Rattenaorten wurden in eine Perfusionskammer eingespannt, in einen Kreislauf eingebunden und für 14 Tage mit Zellkulturmedium perfundiert. Die Kalzifizierung wurde durch Zusätze im Medium induziert. Es zeigte sich, dass die IPA die physiologischen Bedingungen besser widerspiegelt als bestehende in vitro- und ex vivo-Modelle und zugleich tierschonender ist als in vivo-Modelle. Zudem ermöglicht es aufgrund der guten Zugänglichkeit die Untersuchung der Rolle des Endothels bei der medialen Gefäßverkalkung. Der erste Schritt war die Entwicklung und Optimierung der Methoden. Es wurde eine Technik zur schonenden Aortengewinnung und -präparation entwickelt, die Medien wurden in ihrer Zusammensetzung optimiert und der Versuchsaufbau wurde entwickelt und optimiert, ebenso der Versuchsablauf. Nach erfolgreicher Entwicklung des Modells wurde untersucht, ob sich in der IPA mittels Kalzifizierungsmedium eine mediale Kalzifizierung induzieren ließ. Hierfür wurden Versuche mit Kontrollmedium und Kalzifizierungsmedium durchgeführt. Ausgewertet wurden 12 Aorten aus 4 Kalzifizierungsversuchen und 9 Aorten aus 3 Kontrollversuchen. Der Kalziumgehalt der Aorten wurde photometrisch quantifiziert und histologisch mit Färbungen zum Kalziumnachweis untersucht. Der mittlere Kalziumgehalt der Aorten aus Kontrollversuchen lag bei 1,68 μg/mg. In Kalzifizierungsversuchen stieg er auf 4,42 μg/mg an. Die Differenz war signifikant. Es ist also möglich im Modell der IPA eine mediale Kalzifizierung der Aortenwand zu induzieren. Die Histologie unterstützte dieses Ergebnis. Sie zeigte zudem, dass die Kalziumeinlagerungen in den IPAs medial lokalisiert waren. Dies entsprach den Vorgängen in vivo, im Gegensatz zu ex vivo kalzifizierten Kontrollen, in welchen die Kalziumeinlagerungen unselektiv in allen Wandschichten lokalisiert waren. Mit der IPA wurde ein Modell zur Erforschung der medialen vaskulären Kalzifizierung entwickelt und etabliert. Es ermöglicht eine gezielte Manipulation und Untersuchung des Endothels und simuliert physiologische Bedingungen besser als bestehende in vitro- und ex vivo-Modelle.
Medial vascular calcification, also known as arteriosclerosis, plays a vital role in the development of cardiovascular diseases. It frequently occurs in patients with chronic renal disease, where it is associated with increased morbidity and mortality. Contrary to former opinions, medial vascular calcification is an actively regulated process, influenced by various factors. A so far poorly studied factor is the role of the endothelium. For studying vascular calcification, there are several in vitro-, ex vivo- and in vivo- models available in which vascular calcification is induced by different methods. However, each of these models shows certain disadvantages. The goal of this thesis was the development and establishment of a novel physiological ex vivo-model: The Isolated Perfused Aorta (IPA). Rat aortas were placed in a perfusion chamber, integrated into a circular flow and perfused with cell culture medium for 14 days. Calcification was induced by substances added to the medium. It was found that the IPA imitates physiological conditions better than existing in vitro- and ex vivo-models and it burdens the animals less than in vivo-models. Due to its good accessibility it also allows to study the role of the endothelium in medial vascular calcification. The first step was the development and optimization of methods. A technique for the gentle isolation and preparation of aortas was developed, the composition of perfusion media was optimized and the experimental design was developed and optimized, as well as the experimental process. After the successful development of the model it was examined, whether calcification could be induced by perfusion with a calcifying medium. Therefore, experiments with calcifying medium and control medium were performed. 12 aortas from 4 calcifying experiments and 9 aortas from 3 control experiments were analyzed. The amount of calcium in the aortas was quantified by photometric measurement and examined histologically by stainings for calcium detection. The average amount of calcium in aortas from control experiments was 1.68 μg/mg. In calcifying experiments it reached 4.42 μg/mg. The difference was significant. Thus, it is possible to induce a medial calcification of the aortic wall in the model of the IPA. Histology supported this result. Moreover, it showed that the incorporated calcium was located in the media of the aortic wall. This corresponded with the processes in vivo, opposed to the ex vivo calcified controls, in which the calcium incorporations were located unselectively in all wall layers. With the IPA, a model for studying the medial vascular calcification was developed and established. It allows the specific manipulation and investigation of the endothelium and it simulates physiological conditions better than established in vitro- and ex vivo-models.