dc.contributor.author
Delbo, Marco
dc.date.accessioned
2018-06-07T23:33:53Z
dc.date.available
2004-11-10T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/10656
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14854
dc.description
Title page, Table of Contents, List of Figures
Abstract and Acknowledgments
Deutsche Zusammenfassung viii
1\. Introduction 1
1.1 Asteroids 1
1.2 Main Belt Asteroids 2
1.3 Physical characteristics of Near Earth Asteroids and Near Earth Objects
5
1.4 The need of physical characterization of NEOs: statement of the problem
10
1.5 Scope of this work 2
2\. Sizes and albedos of asteroids: the radiometric method and asteroid
thermal models 13
2.1 Foreword 13
2.2 Introduction 13
2.3 Asteroid surface temperatures 15
2.4 Calculation of the emitted thermal infrared flux 18
2.5 Constraints on diameter and albedo from the visible absolute magnitude
19
2.6 Radiometric diameters and albedos 19
2.7 Thermal models of asteroids 20
2.7.1 The Standard Thermal Model (STM) 20
2.7.2 The Fast Rotating Model (FRM) 22
2.7.3 The near-Earth asteroid thermal model (NEATM) 23
2.8 Uncertainties 26
2.8.1 Rotational variability effects and lightcurve correction of infrared
fluxes 26
2.8.2 The actual temperature distribution differs from the modeled one 26
2.8.3 Accuracy of the H values 27
2.9 Thermophysical models 27
2.10 Summary 28
3\. Thermal infrared observations of near-Earth asteroids and data reduction
31
3.1 Foreword 31
3.2 Introduction 31
3.3 Thermal infrared ground based observations 33
3.4 Thermal IR photometry 36
3.5 Aperture photometry and photometric uncertainties 38
3.6 Data reduction of thermal IR data 39
3.7 Thermal infrared observations of NEAs: a method for accurate nod-set
registering 42
3.8 Color correction 44
3.9 Thermal IR spectroscopy at the TIMMI2 45
3.10 Visible CCD observations at ESO: data reduction 49
3.11 The data set 50
3.11.1 Near-Earth asteroids observed at KECK 51
3.11.2 Near-Earth asteroids observed at ESO 52
3.11.3 Near-Earth asteroids observed at NASA-IRTF 53
3.12 Summary 54
4\. Thermal model fits to thermal infrared data and derivation of albedos and
diameters 57
4.1 Foreword 57
4.2 Introduction 57
4.2.1 Diameters, albedos and eta-values derived from observations at Keck 58
4.2.2 Diameters, albedos and eta-values derived from observations at ESO 59
4.2.3 Diameters, albedos and eta-values derived from observations at NASA-
IRTF 60
4.3 Comments on individual asteroids 60
4.3.1 15817 Lucianotesi (1994 QC) 61
4.3.2 2000 EV70 62
4.3.3 2001 HW15 62
4.3.4 25143 Itokawa (formerly known as 1998 SF36) 62
4.3.5 2001 LF 65
4.3.6 5381 Sekmeth 67
4.3.7 25330 (1999 KV4) 69
4.3.8 2002 AV4 70
4.3.9 5587 (1990 SB) 71
4.3.10 19356 (1997 GH3) 75
4.3.11 5604 (1992 FE) 75
4.3.12 37314 (2001QP) 76
4.3.13 33342 (1998WT24) 76
4.3.14 35396 (1997 XF11) 79
4.3.15 1580 Betulia 83
4.4 Physical characterization of NEAs: summary of results 85
5\. Analysis of results from thermal models: the observed albedo distribution
of NEAs and the correlation of eta with the phase angle 91
5.1 Foreword 91
5.2 The observed albedo distribution of NEAs 91
5.3 Phase angle dependence of the observed color temperature 95
5.3.1 NEAs with anomalous thermal properties (eta>2) 96
5.3.2 NEAs with "common" thermal properties 97
5.4 The infrared phase curve of NEAs with �common� thermal properties 98
5.5 Comparison of radiometric diameters with radar 100
5.6 On the recalibration of the STM for NEAs 105
5.7 Correlation of radiometric albedos with solar phase angle 108
5.8 Conclusions 109
6\. Estimate of the thermal inertia of NEAs and assessment of the accuracy of
thermal models 113
6.1 Foreword 113
6.2 Introduction 113
6.3 Thermophysical model components 116
6.4 Thermal Inertia and the heat diffusion within spherical craters 117
6.5 Numerical simulations 120
6.6 Results of the simulations 124
6.6.1 Effects of thermal inertia and rotation rate on the theoretical
dependence of the NEATM eta-value as a function of the phase angle 124
6.6.2 Effects of surface roughness on the theoretical dependence of the NEATM
eta-value as a function of the phase angle 126
6.6.3 Combined effects of thermal inertia, rotation rate and surface
roughness on the theoretical dependence of the NEATM eta-value as a function
of the phase angle 127
6.7 The thermal inertia of NEAs 132
6.8 Implications for the Yarkovsky effect on kilometer and sub-kilometer size
asteroids 138
6.9 Effects of surface roughness, thermal inertia and rotation rate on the
accuracy of NEA radiometric diameters and albedos 139
6.10 Conclusions 146
7\. Conclusions and future works 149
7.1 Conclusions 149
7.1.1 This work increases the number of NEAs with measured sizes and albedos
by 54% 149
7.1.2 The observed NEAs are on average brighter than main belt asteroids 149
7.1.3 There is a trend of increasing albedo with decreasing size for observed
S-type NEAs 150
7.1.4 The ambiguous taxonomic classifications of six asteroids have been
clarified in the light of the new albedo values. 150
7.1.5 The apparent color temperature of the observed NEAs is phase angle
dependent 150
7.1.6 The variation of the color temperature with phase angle depends on the
albedo 151
7.1.7 The observed distribution of the color temperature with the phase angle
can be explained in terms of thermal inertia and surface roughness 151
7.1.8 The best-fit thermal inertia of the observed NEAs is 550±100J m^(-2)
s^(-0.5) K^(-1) or about 11 times that of the Moon 151
7.1.9 There are asteroids with anomalously low color temperature 152
7.1.10 The observed distribution of color temperature allows a calibration of
thermal models for applications to NEAs 152
7.1.11 We have derived a quantitative assessment of the accuracy of thermal
models and a correction function for the nominal results of the NEATM and the
STM 153
7.2 Future works 153
7.2.1 Application of thermophysical models to NEAs 153
7.2.2 Study of the contribution of a selection bias in the observed trend of
increasing albedo with decreasing size 154
7.2.3 Study the range of thermal and surface properties of NEAs by means of
thermal infrared 154
Appendix A 165
Observed thermal Infrared Fluxes of near-Earth asteroids 165
Appendix B 173
Colour correction factors for LWS, TIMMI2, MIRSI and MIRLIN filters 173
B.1 LWS at Keck 1 filters and color correction factors 173
B.2 TIMMI2 filters and color correction factors 176
B.3 MIRLIN filters and color correction factors 177
B.4 MIRSI filters and color correction factors 178
Appendix C 179
Thermal Infrared photometry: NOTES 179
LEBENSLAUF 181
dc.description.abstract
The topic of this dissertation is the investigation of physical properties of
near-Earth Asteroids (NEAs) to improve our understanding of their nature,
origin and their relation to main-belt asteroid (MBAs) and comets.
A major aspect of the research is the use and the improvement of models of the
thermal infrared emission of asteroids (the so-called thermal models) to
facilitate the determination of sizes, albedos and other physical properties
of NEAs. A major development within this study is the discussion of the
results from new observing programs with the 10m - Keck 1 telescope, the NASA-
Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii and the 3.6m telescope
at the European Southern Observatory (ESO), La Silla, Chile. In the framework
of these observing programs, thermal emission continua of thirty-two NEAs have
been obtained in the medium infrared (MidIR) (5-20 microns).
By fitting thermal models to the observational data, we have derived the sizes
and the albedos of a significant sample of the near-Earth asteroid population.
This work increments the number of NEAs with measured sizes and albedos by
54%. If we include objects for which the diameter and the albedo have been
refined, this increment increases up to almost 70%. The uniqueness of our
project was the possibility of studying smaller and fainter objects which are
only accessible with the most up-to-date Mid-IR instrumentations and the
largest telescopes on the ground. There were very few thermal infrared
observations of asteroids in the 1-kilometer size range, and we have more than
doubled the number of subkilometer-NEAs with measured size and albedos. The
good quality data that we have obtained constitute the largest database of
NEAs radiometric diameters and albedos.
An accurate determination of sizes for a significant sample of NEAs, besides
providing crucial input for the assessment of the impact hazard these objects
pose for our planet, gives important clues about their surface
characteristics.
Although we confirm that the spread of NEA albedos is very large (pV = 0.02 -
0.55), consistent with their being supplied from more than one source region,
we have found that observed NEAs are on average brighter than MBAs. The
average value of radiometrically determined albedo is 0.27, which is much
higher than the mean albedo of observed MBAs (~0.11). In several cases the
albedos are in the ranges expected for their taxonomic types, although some
exceptions are evident. Overall, we find that observed S-type NEAs are on
average 20% brighter than S-type MBAs, whereas observed C-type NEAs have on
average albedos 57% higher than C-type MBAs. Such dichotomy between the albedo
statistics of large and small asteroids implies a fundamental difference in
surface properties of small asteroids with respect to the larger ones. We
show, moreover, that a variation of surface properties with size exists within
the NEA population itself. A trend of increasing albedo with decreasing
diameter for S-type NEAs has been identified. We argue that this trend is
indicative of recently exposed, relatively unweathered surfaces. Although a
selection effect in favor of the discovery of the brightest asteroids would
give rise to such trend, this result is also consistent with the trend to
ordinary-chondrite-type reflection spectra with decreasing size observed in
the NEA population. This last effect is also attributed to a lack of space
weathering of relatively young surfaces.
NEAs do not only have higher albedos than larger MBAs, but they differ also in
surface thermal properties. Our work confirms the hypothesis that these
asteroids have higher thermal inertias than large MBAs. We have derived a
best-fit estimate for the thermal inertia of the observed near-Earth asteroids
of 550±100 J m^(-2) s^(-0.5) K^(-1). This value is about eleven times higher
that of the Moon and more than 30 times larger that of the largest asteroids 1
Ceres and 2 Pallas. This result has important implications for our
understanding of the nature and the origin of these bodies. For instance, the
higher thermal inertia is an indication that these asteroids have surfaces
covered with a regolith courser than the lunar one and, very likely, different
surface fractional rock coverage than large MBAs.
This result was obtained by studying the correlation of the observed
distribution of surface color temperatures that NEAs display as a function of
the phase angle in the light of a thermophysical model. The thermophysical
model that we have developed in this work, takes account of the effects of
rotation rate, thermal inertia and surface roughness on the thermal emission
of airless bodies. In particular, we have demonstrated that the observed
distribution of the color temperature with the phase angle can be used to
constrain the thermal inertia (and partially the surface roughness) of the
observed asteroids in the hypothesis that their spin vectors were randomly
oriented.
By means of our thermophysical model, we have also obtained a quantitative
assessment of the uncertainties in the NEAs albedos and diameters derived by
using the Standard Thermal Model (STM and the near-Earth asteroids thermal
(NEATM) model, which both make assumption about the surface temperature
distribution and the thermal inertia of NEAs. We have numerically estimated a
correction function for NEAs radiometric diameters and albedos derived by
means of the STM and of the NEATM, provided that spin status and thermal
parameter of the asteroid are known. When such information is not available,
the accuracy of NEATM results can be still estimated on the basis of the
derived color temperature of the objects.
Our intriguing new results suggest that, by analyzing thermal infrared
observations of NEAs of different sizes and classes by means of thermophysical
modelling, it is possible to study the range of thermal properties and surface
structure present in the NEA population.
de
dc.description.abstract
Das Thema dieser Dissertation ist die Untersuchung der physikalischen
Eigenschaften von erdnahen Asteroiden (NEAs), um unser Verstaendnis ihrer
Natur, ihren Ursprungs und ihre Beziehung zu Hauptgürtelasteroiden (MBAs) zu
verbessern.
Ein Hauptaspekt dieser Forschungsarbeit ist der Einsatz verbesserter
thermischer Modelle zur Beschreibung der Infrarot-Emissionen von Asteroiden.
Ziel der Modellierung ist die Bestimmung von Groesse, Albedo und anderen
Eigenschaften von NEAs aus Beobachtungsdaten.
Einen Kernpunkt dieser Arbeit stellt die Diskussion der Ergebnisse von drei
neuen Beobachtungsprogrammen, mit dem 10m Keck 1 Teleskop, dem NASA-Infrared
Telescope F. (IRTF) auf dem Mauna Kea, Hawaii, und dem 3,6m Teleskop auf der
Europaeischen Suedsternwarte (ESO) in La Silla, Chile, dar. Diese
Beobachtungsprogramme umfassten die Messung der thermalen Emission von 32 NEAs
im mittleren Infrarot (Mid-IR) von 5-20 microns.
Durch einen Fit der thermischen Modelle an die Beobachtungsdaten konnten wir
Groesse sowie Albedo einer beachtlichen Anzahl von erdnahen Asteroiden
bestimmen. Diese Arbeit erhoeht die Anzahl von NEAs mit bekannten Groessen und
Albedos um 54%. Nimmt man Objekte hinzu, deren Durchmesser und Albedo
korrigiert wurden, so erhöht sich diese Zahl sogar auf 70%. Die Besonderheit
unseres Projektes besteht in der Moeglichkeit, kleinere und lichtschwächere
Objekte zu studieren, die sonst nur mit neuesten Mid-IR Instrumenten und den
groessten erdgebundenen Teleskopen zugaenglich waren. Bisher gab es nur sehr
wenige Beobachtungen von Asteroiden der Groessenordnung von einem Kilometer
und wir konnten die Anzahl von Sub-Kilometer NEAs mit bekannter Groesse und
Albedo mehr als verdoppeln. Die von uns erhaltenen qualitativ guten Daten
bilden die groesste Datenbank von radiometrischen Durchmessern und Albedos von
NEAs.
Die genaue Groessenbestimmung einer grossen Anzahl von NEAs ermoeglicht uns,
neben der Beurteilung der Auswirkungen eines moeglichen Einschlages auf
unserem Planeten, wichtige Rueckschuesse auf deren Oberflaecheneigenschaften.
Wir konnten bestaetigen, dass die Verteilung der NEA-Albedos sehr breit ist
(pV = 0.02 � 0.55), was im Einklang zu der Tatsache steht, dass sie aus mehr
als einer Ursprungsregion gespeist werden. Allerdings erwiesen sich die
beobachteten NEAs im Allgemeinen als heller als MBAs. Der durchschnittliche
Wert der radiometrisch bestimmten Albedos kann mit 0.27 angegeben werden und
liegt damit viel hoerher als die durchschnittliche Albedo von beobachteten
MBAs (~0.11). In den meisten Fällen bewegen sich die Albedos in den aufgrund
ihrer taxonomischen Art erwarteten Bereichen, obwohl einige Ausnahmen evident
wurden. Im Allgemeinen fanden wir, dass beobachtete S-type NEAs im
Durchschnitt 20% heller als S-type MBAs sind, wobei beobachtete C-type NEAs im
Durchschnitt 57% hoehere Albedos als C-type MBAs haben. Solch eine Diskrepanz
in der Albedo Statistik zwischen grossen und kleinen Asteroiden impliziert
einen fundamentalen Unterschied in den Oberflaecheneigenschaften von kleinen
Asteroiden im Vergleich zu den groesseren. Wir zeigen weiterhin, dass es eine
Variation der Oberflaecheneigenschaften mit der Groesse innerhalb der NEAs
selbst gibt. In diesem Zusammenhang konnte ein Trend von steigender Albedo mit
sinkendem Durchmesser von S-type NEAs identifiziert werden. Wir argumentieren
weiter, dass dieser Trend ein Anzeichen von erst letztlich freigelegten und
dem "space-weathering" ausgesetzten Oberflaechen ist. Dieses Ergebnis ist
konsistent mit dem Trend zu Reflexionsspektren von gewoehnlichen Chondriten
bei kleineren NEAs, der auch auf das verringerte space weathering an jungen
Oberflaechen zurueck gefuehrt wird.
NEAs weisen nicht nur eine hoehere Albedo als die groessten MBAs auf, sie
differieren auch in ihren thermalen Oberflaecheneigenschaften. Unsere Arbeit
bestaetigt die Hypothese, dass diese Asteroiden eine groessere thermische
Traegheit als grosse MBAs haben und wir leiten im Zuge dessen einen best-fit
Wert von 550±100 J m^(-2) s^(-0.5) K^(-1) fuer die thermische Traegheit der
beobachteten NEAs ab. Dieser Wert ist ungefaehr 11-mal höher als der des
Mondes und 30-mal hoeher als der der größten Asteroiden 1 Ceres und 2 Pallas.
Dieses Resultat hat wichtige Implikationen für unser Verständnis von Natur und
Ursprung dieser Objekte. Zum Beispiel weist eine hoehere thermische Traegheit
auf groeberes Regolith auf der Oberflaeche dieser Asteroiden im Vergleich zu
der des Mondes und, sehr wahrscheinlich, auf eine andere Oberflaechen-
Felsverteilung in Bezug auf grosse MBAs hin.
Dieses Resultat ergab sich aus dem Studium der Korrelation von beobachteter
Verteilung der Oberflaechen-Farbtemperatur von NEAs als Funktion des
Phasenwinkels im Lichte eines thermophysikalischen Modells. Das in dieser
Arbeit entwickelte Modell bezieht Effekte wie Rotationsrate, thermische
Trägheit und Oberflächen-Rauhigkeit für die Berechnung der thermischen
Emission von Körpern ohne Atmosphäre ein. Im Speziellen konnten wir
demonstrieren, dass die beobachtete Verteilung der Farbtemperatur in
Abhaengigkeit vom Phasenwinkel als Mittel zur Bestimmung der thermischen
Traegheit (und zum Teil der Oberflaechen-Rauhigkeit) der beobachteten
Asteroiden unter der Annahme von zufällig verteilten Spin-Vektoren benutzt
werden kann.
Mit Hilfe unseres thermophysikalischen Modells konnten wir eine quantitative
Bestimmung der Unsicherheiten in Albedo und Durchmesser der NEAs, abgeleitet
mit dem Standard Thermal Model (STM) und dem Near Earth Asteroid Thermal Model
(NEATM), die beide Annahmen ueber die Oberflaechentemperaturverteilung und
thermische Traegheit von NEAs machen, gewinnen. Weiterhin haben wir numerisch
eine Korrekturfunktion fuer die radiometrischen Durchmesser und Albedos, die
aus dem STM bzw. aus NEATM ermittelt werden, bestimmt, vorausgesetzt Spin
Status und thermische Parameter des Asteroiden sind bekannt. Sind solche
Informationen nicht verfuegbar, kann die Genauigkeit der NEATM Ergebnisse
immer noch auf Basis der abgeleiteten Farbtemperatur der Objekte abgeschätzt
werden. Unsere aufregenden neuen Ergebnisse legen nahe, dass die Analyse von
thermischen Infrarot- Beobachtungen von NEAs unterschiedlicher Groesse und
Klasse mit Hilfe von thermophysikalischen Modellen ein Studium der in der NEA
Population vorkommenden thermischen Eigenschaften und Oberflaechenstrukturen
möglich macht.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
thermal infrared models
dc.subject
thermal inertia
dc.subject
data reduction
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
The nature of near-earth asteroids from the study of their thermal infrared
emission
dc.contributor.firstReferee
Professor Dr. Gerhard Neukum
dc.contributor.furtherReferee
Professor Dr. Erwin Sedlmayr
dc.date.accepted
2004-11-04
dc.date.embargoEnd
2004-11-11
dc.identifier.urn
urn:nbn:de:kobv:188-2004002899
dc.title.translated
Die Natur von erdnahen Asteroiden abgeleitet aus dem Studium ihrer thermischen
Infrarot-Emissionen
de
refubium.affiliation
Geowissenschaften
de
refubium.mycore.fudocsId
FUDISS_thesis_000000001521
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2004/289/
refubium.mycore.derivateId
FUDISS_derivate_000000001521
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access