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to those η-values derived by observing the morning side of the asteroid, whereas dashed-
dotted curves indicate those η-values obtained observing the afternoon side. Curves obtained 
for Θ=0.025 and 0.13 are not plotted since the derived η-values are constant with phase angle 
and their values between 1 and 1.05. The dotted black curve represents the expected η values 
for an FRM-like (Θ→∞) asteroid. 124 

Fig. 6.7 NEATM derived η parameter as a function of the phase angle and macroscopic surface 
roughness θ . The sun and the observer are in the equatorial plane of the synthetic asteroid. 
The thermal parameter Θ is equal to 0. Different colors are used for different values of θ : η-
values derived for θ =58° are coded with black color; those obtained for θ =36° are coded 
with red; for θ =20° with green and for θ =10° with blue. 126 

Fig. 6.8 Continuous line: diurnal temperature profiles for an equatorial tile of an object with sub-
solar latitude equal to zero. Dashed-dotted line: diurnal temperature profiles for one of the 
four tiles on the floor of an equatorial crater with opening angle equals to 45° (a) and with 
opening angle equals to 90° (hemispherical crater). 127 

Fig. 6.9 Combined effects of thermal inertia, rotation rate and surface roughness on the theoretical 
dependence of the NEATM η-value with the phase angle. 130 

Fig. 6.10 Combined effects of thermal inertia, rotation rate and surface roughness on the theoretical 
dependence of the NEATM η-value with the phase angle. 131 

Fig. 6.11 Verification of the hypothesis that η-values derived for asteroids observed from randomly 
oriented directions are limited by the “morning” curve M and the curve of zero thermal inertia 
N. The thermophysical model was run for three values of the sub-solar latitude BSS. Crosses 
represent those η-values derived for asteroids with BSS=0°, asterisks for asteroids with 
BSS=30° and diamonds for BSS=60°. Note how η-values collapse to the curve of zero thermal 
inertia as BSS approaches 90°. Following our notation M is the curve with η=η(-|α|, Θ, θ ), A 
that with η= η(|α|, Θ, θ ) and N that with η=η(|α|, Θ=0, θ ). 133 

Fig. 6.12 Limiting curves which do not fit properly the observed η-values. See Fig. 6.13 caption for 
a description of the symbols. 134 

Fig. 6.13 Limiting curves which DO fit the observed η-values. The values of the Θ and the θ  
parameter used to draw the curves are shown on the upper left side of each plot. For each 
value 135 

Fig. 6.14 Limiting η-α curves to fit observed η-values of 5381 Sekmeth. Those curves were 
calculated for Θ=4.4 and θ =36° 136 

Fig. 6.15 Limiting η-α curves to fit observed η-values of 433 Eros. Those curves were calculated for 
Θ=1.0 and θ =20° 137 

Fig. 6.16 Section of the STM relative albedo error function i.e. (pV_STM(α,Θ, θ )-pV_TM)/ pV_TM×100 
at constant value of θ . The refined STM of Lebosfky and Spencer (1989) was used with 
constant η=0.756 and βE=0.01 magnitude per degree. The function was numerically evaluated 
on a grid of ten degree of step size in α and at Θ=[0.13, 0.25, 0.40, 0.50, 1.00, 2.00, 4.60, 
12.70, 25.5]. 141 

Fig. 6.17 Section of the STM relative albedo error function i.e. (pV_STM(α,Θ, θ )-pV_TM)/ pV_TM×100 
at constant value of θ . In contrast to Fig. 6.16, here η is constant but equal to 0.95 and 
βE=0.015 magnitude per degree, as described in section 5.6. The function was numerically 
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evaluated on a grid of ten degree of step size in α and at Θ=[0.13, 0.25, 0.40, 0.50, 1.00, 2.00, 
4.60, 12.70, 25.5]. 142 

Fig. 6.18 Section of the NEATM relative albedo error function i.e.  (pV_NEATM(α,Θ, θ )-pV_TM)/ 
pV_TM×100 at six different constant values of θ . The function was numerically evaluated on a 
grid of ten degree of step size in α and at Θ=[0.13, 0.25, 0.40, 0.50, 1.00, 2.00, 4.60, 12.70, 
25.5] 143 

Fig. 6.19 Distribution of the albedo relative error as a function of the η-value for asteroid observed 
at phase angle between -40 and 40 degrees (a) and at phase angle larger than 40° or smaller 
than -40°. 146 

Fig B.1 Transmission curves for the filters installed at the LWS (Wirth & Campbell, personal 
communication, 2000). In the case of the M filter, the curve is the product of the transmission 
of the filter with that of the atmosphere and the optics of the instrument. 175 
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