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C h a p t e r  2   

Sizes and albedos of  asteroids: the radiometric method and 
asteroid thermal models 

2.1 Foreword 

Even on the largest 10m class telescopes most NEAs appear as point like sources. However, the size and 
the albedo of an atmosphere-less body can be derived by means of the so-called radiometric technique, 
which combines observations obtained in the thermal infrared region with the visible brightness of the 
object. In this chapter we illustrate the basis of this method which makes use of thermal models 
describing how the infrared radiation is emitted from the surface of the body. We introduce the 
Standard Thermal Model (STM), the Fast Rotating Thermal Model (FRM) and the NEATM, the near 
Earth asteroid thermal model and we give details of the algorithms used for their implementation. 
Assumptions involved in the use of thermal models cause the resulting asteroid diameters and albedos 
to be model dependent and affected by uncertainties which are discussed in section 2.8. Flux variability 
due to asteroid rotation alters the shape and the mean intensity of the measured spectral energy 
distribution. We introduce a method to refer measured infrared fluxes to lightcurve mean magnitude 
when visible lightcurve data are available for the epoch of thermal infrared measurements. The latter 
correction, which can be neglected for large main-belt asteroids, is proven to be of crucial importance 
for small and irregular bodies often observed at large phase angles, as NEAs are. 

2.2 Introduction 

With modern medium infrared instrumentation, equipping the largest existing telescopes, it is 

possible to measure the weak thermal infrared emission of NEOs, down to sizes of the order of some 

hundred meters. 

a) b) 

Fig. 2.1 N-band a) and Q-band b) spectra of the thermal infrared emission of the near-earth 
asteroid 5587 (1990SB) observed on April 09, 2001 with the TIMMI2 installed at the 3.6m 
telescope, La Silla, ESO (Chile). This asteroid has a diameter of almost 4km.  
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By comparison with calibration stars, the spectral energy distribution of which is known to high 

accuracy (i.e. 3%, see Cohen et al, 1999), asteroids raw data are converted to infrared fluxes. Chapter 3 

of this work is manly devoted to the methods of thermal infrared photometry that we have developed 

to derive asteroid infrared fluxes from observations obtained at Keck, ESO, NASA-IRTF telescopes.  

Fig. 2.2 shows examples for thermal infrared spectra of asteroids.  

 

Fig. 2.2 Observed thermal infrared fluxes of the NEA 5587 on the left and of the largest 
asteroid 1 Ceres. Note the noise affecting Q-band data which have been binned for 
increasing the signal to noise ratio. Continuous line is a black body fit to the infrared spectra. 

In contrast to reflected visible light, thermal infrared radiation carries direct information about the 

size of the asteroid: to first-order approximation, one can describe the observed thermal energy 

distribution (Fig. 2.2) as the emission of a black body at an effective temperature Teff multiplied by the 

material emissivity ε(λ) and by the solid angle the radiator subtends on the sky i.e.  
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The term AP of Eq. (2-1) is the emitting area of the thermal radiator projected along the line-of-sight. 

The distance of the object from the observer, ∆, is known from the ephemerides of the asteroid. If we 

assume the emissivity to be constant and known at every wavelength (it is common practice to assume 

that asteroid surfaces have ε(λ)=0.9 for wavelengths in the range 5-20 µm), in Eq. (2-1) we have only 

two unknowns: AP and Teff . If the spectral energy distribution of the thermal radiator has been sampled 
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at several infrared wavelengths λi, i=[1...N], Eq. (2-1) can be evaluated at those λi and we can, finally, 

write a system of non-linear equations: one equation for each measured spectral data point: 
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A solution to system (2-3) can be found by a non-linear least square fit. A very effective method to be 

used in such cases is the Levenberg-Marquardt algorithm described, for instance, by Press et al. (2002), 

section 15.5. Such method allows the projected area and thus the effective diameter of an asteroid to be 

retrieved with typical accuracy of about 10%. The effective surface temperature is derived 

simultaneously with errors of no more than 10-20 K. At low solar phase angles, the assumption that the 

emitting projected area of the thermal radiator corresponds to the actual area of the object projected on 

the sky introduces an error of negligible contribution, given the other source of uncertainties, such as 

the absolute calibration of the infrared flux. We thus can obtain the unknown size of the asteroid in this 

very simple way. Unfortunately, for very weak targets it is not always possible to obtain measurements 

of the spectral energy distribution to a level of accuracy good enough to allow a stable solution to Eq. 2-

1 to be found. In those cases, we have to rely on different methods which make use of models (thermal 

models) describing how the thermal infrared emission at the surface of asteroids originates. The first 

step in modeling the thermal emission of asteroids is to estimate the surface temperature distribution. 

2.3 Asteroid surface temperatures 

The temperature of a surface element of an asteroid is a function of the distance from the Sun, 

albedo, emissivity, and angle of inclination to the solar direction. A dark object absorbs more solar 

radiation than what brighter one does, which results in a higher equilibrium temperature. The total 

incoming energy incident on a surface element of area dS is: 

dS
r
SdUi µ2

0=  (2-4) 

where µ is the direction cosine of the normal to the surface with respect to the solar direction, S0 the 

solar constant and r the heliocentric distance of the asteroid. Energy that is not reflected is absorbed by 

the asteroid surface: 
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where A is the bolometric Bond albedo, which is the ratio of total scattered solar energy in all directions 

and at all wavelengths to the incident energy. The absorbed energy and has to be balanced by thermal 

emission. The energy emitted by a surface dS with emissivity ε at a temperature T is: 

dSTdUe
4σε=  (2-6) 

where σ is the Stefan–Boltzmann's constant. Assuming that each element of the surface is in 

instantaneous equilibrium with solar radiation, conservation of energy implies that dUa = dUe. The 

following equation for a surface element at the subsolar point (µ = 1) can be written: 
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Eq (2-7) can be used to derive the value of TSS, the maximum (sub-solar) temperature, as a function 

of heliocentric distance, r, and Bond albedo, A via the relation: 
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Fig. 2.3 shows the dependence of TSS as a function of the heliocentric distance and Fig. 2.4 shows the 

dependence of the sub-solar temperature of an asteroid as a function of the bolometric Bond albedo A. 

A is proportional to the geometric visible albedo pV via the relation:  

VV pqAA ×=≅  (2-9) 

where q is the phase integral which allows the parameter A to be linked directly to pV. The geometric 

visual albedo pV, which is defined as the ratio of the visual brightness of a planetary body observed at 

zero phase angle to that of a perfectly diffusing ''Lambertian'' disk of the same radius and at the same 

distance as the body, is a measurable and widely quoted parameter. In the standard H, G magnitude 

system described by Bowell et al. (1989), in which H is the absolute magnitude and G is the slope 

parameter we have that: 

Gq ×+= 684.0290.0  (2-10) 
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Fig. 2.3 Dependence of the sub-solar temperature as a function of its heliocentric distance 
for an asteroid in instantaneous thermal equilibrium with sunlight at all points on its surface. 
For objects orbiting the Sun in the near-Earth space, the surface temperature is about 400K 
and the emitted thermal radiation peaks around 8 µm. However, the radiation of more 
distant asteroids shifts toward longer wavelength as their temperature decreases. The 
following parameters have been used to produce the plot: A = 0.0393 (corresponding to pV 
= 0.1 and G = 0.15) emissivity = 0.9, and solar constant = 1373 W m–2. 

 

Fig. 2.4 Dependence of the sub-solar temperature of an asteroid as a function of the 
bolometric Bond albedo A. This dependence does not depend on the heliocentric distance 
of the body. 
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The equation of thermal equilibrium can be used not only to estimate the maximum temperature, but 

it determines the distribution of temperatures on the surface as well:  
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and in the case of a sphere, where the direction cosine is a simple function of the solar colatitude Ω 
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Eqs. 2-8 and 2-12 are very important: they define the temperature distribution of a sphere on the 

assumption of instantaneous thermal equilibrium with sunlight at all points on its surface (Equilibrium 

Model, hereafter EM).  

2.4 Calculation of the emitted thermal infrared flux 

Once the temperature distribution is known (or it has been assumed), to calculate the emitted 

infrared flux received by an observer at a distance ∆ from the asteroid is easily achieved by numerically 

integrating the contribution of each surface element visible to the observer, i.e.: 

∫∫
Π

Ω
∆

= dTBF ),()()( 2 λλελ  (2-13) 

where dΩ is the projected area of the surface element, Π is the asteroid projected surface and B(λ,T) is 

the Planck radiation formula. The model infrared flux scales with the projected area (i.e. with the square 

of the effective diameter). So, if we evaluate the integral of Eq. (2-13) on a “reference” asteroid with a 

emitting projected area equal to π/4 km2 (i.e. an asteroid with effective diameter of 1 km) 

∫∫
Π

Ω
∆

=
reference

dTBFreference ),()()( 2 λλελ , (2-14) 

we obtain a direct relationship between the asteroid effective diameter and the measured infrared flux: 

)(/)(2 λλ referencemeasuredeff FFD = . (2-15) 

Since Freference(λ) is a function of pV, the ratio of Eq 2-15 is a function of the geometric visible albedo 

too. The trajectory of this function is shown in Fig. 2.5 
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Fig. 2.5 Constraints on the albedo and effective diameter from thermal infrared observations 
and visible absolute magnitude. Solid line: curve defined by Eq. (2-15), dashed-line: curve 
defined by Eq. (2-16). 

2.5 Constraints on diameter and albedo from the visible absolute magnitude 

The absolute magnitude H of an asteroid, which correspond to the magnitude in the V-band 

measured (or extrapolated) at zero degree of phase angle, at the heliocentric and geocentric distance of 

1AU is related to the geometric visible albedo, pV, and the asteroid effective diameter Deff by the relation 

(e.g. Fowler and Chillemi, 1986): 

5101329 H

V
eff p

D
−

=  (2-16) 

Given the H value, this equation defines the second curve shown in Fig. 2.5 by plotting the diameter 

as a function of the albedo. The intersection of the two curves gives the best estimate for the diameter 

and the albedo of the asteroid. 

2.6 Radiometric diameters and albedos 

The method described above defines the basis for the radiometric determination of asteroid sizes 

and albedos. The principle of this technique has been outlined by Morrison (1973). Furthermore, it is of 

interest to see Lebofsky and Spencer (1989) and Tedesco (1992). Delbo & Harris (2002) and Harris and 

Lagerros (2002) provided recent review of the principle on which this technique is based. 
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2.7 Thermal models of asteroids 

As already described, several assumptions have to be made to determine the bolometric albedo from 

the visual albedo and a model is required to describe the temperature distribution on the surface of the 

asteroid and the way infrared radiation is emitted from a body of given size and bolometric albedo.  

In section 2.5 we have discussed a method to derive diameters and albedos of atmosphere-less 

bodies of the Solar System, which assumes a non-rotating spherical shape in thermal equilibrium with 

solar radiation. Furthermore, the method works at zero degrees of solar phase angle only. However, real 

asteroids are not spherical, neither they are observed at α=0°. Moreover, in the case of objects with 

known size, it was observed that the assumption of thermal equilibrium leads to a zero-phase-angle 

model infrared flux which is too small compared to observations. Resulting asteroids diameters derived 

on the assumption of thermal equilibrium are thus larger than what they actually are. Modifications to 

the simple equilibrium model were therefore introduced to account for asteroid rotation, to compensate 

for the angular distribution of the thermal emission, to adjust the surface temperature to match the 

observed color temperature etc. 

In the next sessions, we introduce the three different asteroid thermal models that will be fitted to 

the measured infrared fluxes to calculate diameters and albedos. 

2.7.1 The Standard Thermal Model (STM) 

The vast majority of asteroid diameters and albedos, including those in the IRAS minor planet survey 

(Tedesco, 1992), and those in the new release of the Supplemental IRAS Minor Planet Survey – SIMPS 

– (Tedesco et al., 2002) have been derived using the Standard Thermal Model (STM). The basis of the 

STM is the assumption of a spherical shape and instantaneous equilibrium between insolation and 

thermal emission at each point on the surface. It was designed to work at zero degree of solar phase 

angle. The angular dependence of the temperature distribution is described by Eq. 2-11. The 

temperature falls to zero at the terminator and there is no thermal emission from the night side. 

However, the “refined” STM of Lebofsky et al. (1986) and Lebofsky and Spencer (1989) includes a 

modification to the sub-solar temperature TSS via the so-called beaming parameter η.  The η parameter 

was introduced to match the occultation diameter of large main belt asteroids and it was included to 

account for the enhancement in the thermal radiation observed at small phase angles. This tendency of 

the radiation to be “beamed” towards the Sun is similar to the opposition effect (see Belskaya and 

Shevchenko, 2000) in the visible light. In the refined STM of Lebofsky and Spencer its value is set to 

0.756 to match the occultation diameter of 1 Ceres and 2 Pallas. One more point has to be addressed: 
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observations are almost never carried out at zero degree of solar phase angle. Matson (1971) and 

Lebosfky and Spencer (1986) observed that asteroids had infrared phase curves which could be 

approximated by a linear function up to phase angles of about 30°. They derived a mean phase 

coefficient βE of 0.01 magnitudes/degree. The STM should give accurate results for an asteroid that has 

thermal properties similar to those of large main-belt asteroids and is observed at a small phase angle. 

STM was designed to work with asteroid infrared magnitudes measured at a single wavelength. In those 

cases where infrared data were available at different wavelengths radiometric resulting diameters and 

albedos were given for each wavelength. It is common practice, for example, to speak of 10-µm or 20-

µm diameters of asteroids. However, if photometric data are available at more than one wavelength the 

STM can be applied to all data points simultaneously searching for a least-square solution by minimizing 

the χ2 of the residuals observed fluxes – predicted model fluxes. In this work, the STM is implemented 

by means of the following algorithm: 

1. Guess the geometric visible albedo pV. 

2. Given the H value, calculate D from Eq. 2-16 

3. From Eq. 2-8, obtain A and calculate TSS using Eq (2-17) with η=0.756 

      
4/1

2
0 )1(

⎥
⎦

⎤
⎢
⎣

⎡ −
=

ηεσ
A

r
STSS  (2-17) 

4. Calculate the temperature distribution on the surface of the sphere  

( ) Ω=Ω 4/1cosSSTT  (2-18) 

where Ω is the angular distance from the sub-solar point (i.e. the colatitude in a reference frame 

with the pole pointing towards the Sun). 

5. Calculate the model flux  
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6. Scale the observed flux to zero degree of phase angle, α 
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7. Calculate the χ2 
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8. Change the value of the pV parameter and reiterate the algorithm (going back to point 2) until 

the minimum value of the χ2 is reached.  
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The value of the pV at χ2 minimum is the least-square best estimate for the albedo of the asteroid. 

The diameter D is simultaneously set to its best (least-square) estimate by Eq (2-16). 

2.7.2 The Fast Rotating Model (FRM) 

Problems arise in the application of the STM to NEAs, which are relatively small and often 

irregularly shaped, may lack the dusty insulating regolith (which reduces the surface thermal inertia) 

characteristic of larger bodies, and are often observed at large solar phase angles. For these reasons the 

assumptions inherent in the STM are not generally valid in the case of NEAs. In general, the STM 

appears to underestimate the diameters and over estimate the albedos of NEAs (Harris and Lagerros, 

2002). Lebofsky et al. (1978) proposed an alternative fast-rotating/high-thermal-inertia thermal model 

that gives results for some NEAs that are in better agreement with diameters and albedos estimated by 

other means (e.g., from radar observations or spectral class). The Fast Rotating Model (FRM), also 

called the iso-latitude thermal model, is an alternative model appropriate for use with objects which 

rotate rapidly or have high surface thermal inertias in which half the thermal emission originates from 

the night side. The FRM assumes a perfect sphere with its spin axis perpendicular to the plane 

containing the asteroid, the observer and the Sun, and a temperature distribution depending only on 

latitude.  

Consider an elementary surface strip around the equator of the spherical asteroid. The conservation 

of energy requires that the solar energy absorbed by the strip on the day side is reemitted as thermal 

radiation around its entire circumference: 

( )θπεσθ dRTdR
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where R is the radius of the asteroid and dθ the width of the strip. Eq (2-22) yields the following 

expression for the sub-solar maximum temperature: 
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which is the analogue of Eq (2-16) with η replaced by π. Finally the temperature on the surface of the 

asteroid is a function of the latitude θ only, i.e.: 

θθ 4
1

cos)( SSTT =  (2-24) 

We have adopted the following algorithm to implement the FRM in this work: 
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1) Guess the geometric visible albedo pV. 

2) Given the H value, calculate D from Eq. (2-16) 

3) From Eq. 2-8 obtain A and calculate TSS using Eq (2-23).  

4) Calculate the temperature distribution on the sphere using Eq (2-24) 

5) Calculate the model flux  
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6) where θ is the latitude in a astro-centric reference frame with the pole orthogonal to the plane 

containing the Earth and the Sun. 

7) Calculate the χ2 
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8) Change the value of the pV parameter and reiterate the algorithm (jumping back to point 2) until 

the minimum value of the χ2 is reached.  

 

The value of the pV at χ2 minimum is the least-square best estimate for the albedo.  Note that the 

FRM does not require any correction to the thermal flux for the phase angle.  

2.7.3 The near-Earth asteroid thermal model (NEATM) 

In general, neither the STM nor the FRM provide good fits to the measured spectral energy 

distributions of NEAs. Harris (1998) showed that it was possible to obtain a good fit to multi-

wavelength thermal infrared data of NEAs with a modification to the STM. The NEATM (see Harris, 

1998 for further details) assumes the asteroid to have a spherical shape and its surface temperature 

distribution to be described by Eq (2-18). However, in this model, Eq (2-17), which defines the sub-

solar temperature, is used with the difference that the value of η is not set equal to 0.756 as it is in the 

case of the STM. Within the NEATM, η is a free parameter, which is iteratively adjusted to provide the 

best fit to the observed thermal infrared fluxes. The effect of changing η is that of changing the object’s 

sub-solar temperature TSS and, as a consequence, the whole surface temperature distribution is scaled by 

a factor η-1/4. Moreover, with respect to the STM, the NEATM differs in the way the phase angle is 

taken into account. Instead of scaling the infrared flux by a factor of 0.01 magnitudes per degree, the 

phase angle is taken into account by calculating numerically the actual thermal flux an observer would 

detect from the illuminated portion of a smooth sphere visible to him at a given solar phase angle, 
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assuming no emission originates on the night side: see Eq (2-28). This treatment assumes a Lambertian 

emission model and has been applied and discussed by previous authors (e.g., Cruikshank and Jones 

1977, Brown 1985). of the STM. The empirical phase coefficient (of 0.01 mag/deg) used with the STM 

has been derived and tested for solar phase angles no greater than 30°. NEAs, however, are often 

observed at much higher phase angles (up to 90°) and they surface characteristics (macroscopic 

roughness, thermal inertia) may differ significantly from those of large main belt asteroids on which the 

STM was calibrated. 

It is important to emphasize that the NEATM requires good wavelength sampling of the thermal 

continuum (i.e., four or five filter measurements over the range 5 to 20 µm) for a stable fit of the η-

parameter to be achieved. If only one or two filter measurements closely spaced in wavelength are 

available, the derivation of η via spectral fitting is not possible. In such cases a default value of η can be 

used. Harris (1998) has proposed the value of 1.2 by the comparison of albedos and diameters of 

objects for which independent information on these parameters is available. Delbò et al. (2003) have 

first studied the dependence of η values derived by the use of NEATM with the phase angle, α. They 

suggested that η=1 for α<45° and η=1.5 for α>45° provide a best fit to the observed distribution of η 

values. 

The algorithm which implements the NEATM in this work can be described as follows: 

1. Guess the geometric visible albedo pV. 

2. Given the H value, calculate D from Eq. 2-15 

3. From Eq. (2-8) obtain A. Provide an initial guess for the η-value (e.g. η=1) and calculate TSS 

using Eq (2-18) and the surface temperature distribution using Eq (2-27) 

( ) ϕθϕθ 4/14/1 coscos, SSTT =  (2-27) 

for θ in the range [-π/2, π/2]. 

4. Calculate the model flux by integrating the Planck’s function over the illuminated portion of a 

smooth sphere visible to the observer 

 ( ) ( )( ) ( )∫ ∫
−

−
∆

=
2/

0

2/

2/

2
2

2

 coscos,,
π π

π

ϕθαθϕϕθλελ ddTBDF ii  (2-28)  

where ξ is the angular distance from the sub-solar point (i.e. the colatitude in a reference frame 

where the pole points toward the Sun). 
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5. Calculate χ2 
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6. Change the value of pV and of the η parameter and reiterate the algorithm (going back to point 

2) until the minimum value of the χ2 is reached.  

In this work, we have implemented the Levenberg-Marquardt Method. (Press et al. 2002) to find the 

minimum of the χ2 function of Eq. 2-29. 

 

Fig. 2.6 As of Fig. 2.3, but TSS is calculated for different value of the parameter η. Solid-line: 
η=1.0; dashed-line: η=0.756 as in the “refined” STM of Lebofsky and Spencer (1989); 
dotted-line: η=0.6, dashed- and dotted-line: η=π which is the value used within the FRM. 

It is of interest to point out that the value of TSS in the thermal models we have here described is 

never equal to the equilibrium value, that Eq (2-8) would  give, unless η is derived (in the case of the 

NEATM) or assumed (as in the case of the STM) equal to one. Fig. 2.6, which is the analogue of Fig. 

2.3 for η≠1, shows the dependence of TSS as a function of the heliocentric distance for different values 

of η and different thermal models. 
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2.8 Uncertainties 

2.8.1 Rotational variability effects and lightcurve correction of infrared fluxes 

The thermal infrared flux that an observer receives from an asteroid varies as the object rotates. If 

fluxes at different wavelengths are measured at different times, as in the case of spectro-photometry 

obtained with narrow band infrared filters, severe alterations of the shape and of the absolute level of 

the measured spectral energy distribution may result6. Thermal model fits may in those cases give 

erroneous results. Thermal infrared fluxes can be corrected for rotational variability if visible lightcurve 

data are available for the time of the thermal observations. Correction of the flux values to the mean 

lightcurve magnitude is performed on the assumption that the thermal infrared and the visible band 

lightcurve are identical. Clearly difference in the lightcurve (i.e. in the amplitude, phase and structures) 

cannot be ruled out and such differences may contribute to the scatter of the data point with respect to 

the thermal infrared continuum. In those cases in which no lightcurve data are available the uncertainties 

in the results are inevitably larger and very difficult to be estimated. 

2.8.2 The actual temperature distribution differs from the modeled one 

Due to their non-zero thermal inertia, real asteroid surfaces are not in instantaneous thermal 

equilibrium with insolation. Moreover, temperature distributions differing significantly from the 

Lambertian temperature distribution cannot be ruled out. Several factors influence the actual 

temperature distribution on the surface of a real body. It is very well known, for instance, that the sub-

solar brightness temperature of the Moon seen at zero phase angle is higher than the temperature 

predicted by the equilibrium with solar radiation (e.g. Sinton, 1962). Furthermore, the temperatures 

along the equator at full moon vary as cos1/6Ω and not as cos1/4 Ω expected from a Lambertian surface. 

Statistical studies showed that the falloff in brightness temperature towards the Moon’s limb can be 

represented by a relation linear in cosΩ (T(Ω)=324.2 +72.6 cosΩ: Shorthill, 1972). The departures of 

the brightness temperature on the lunar surface can be explained by the effects of surface roughness. 

Most asteroids are covered by a very porous soil, similar to the lunar regolith (Housen et al., 1979; 

McKay et al., 1989). Heat conduction in the regolith is extremely low, because of the high porosity.  

However, conduction within the porous material plays an important role in determining the surface 

temperature distribution especially for fast rotating asteroids. Consider a surface element of a body with 

                                                 
6 On the basis of the experience, rule-of-thumb, practical times required to obtain a measurement in one filter, taking into account 

overheads, are between 10 and 40 minutes.  Considering that typical rotational periods for NEAs are of the order of some hours, it is 
clear that light curve effects have to be taken into account. 
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a high thermal inertia: this element behaves like a capacitor or sink for the solar energy, and thus its 

temperature is not only a function of albedo and heliocentric distance but depends also on its previous 

thermal history. With the Sun in the equatorial plane, the higher the thermal inertia is the smoother the 

temperature distribution with respect to longitude is. For a very high thermal inertia and rotation rate 

the surface element has no time to cool down on the night side: its temperature remains constant 

through day and night (i.e., it is independent of longitude). The effect of thermal inertia is coupled to 

rotation rate. A slow rotating asteroid with high thermal inertia displays a similar temperature 

distribution of one rotating very rapidly but with a lower thermal inertia. It is interesting to anticipate 

here a result described in Chapter 6. There, we will show calculated diurnal temperature profiles for an 

asteroid in the near Earth space for different value of the thermal inertia. For relatively low values of 

this parameter small variation in the range 10-20 K are expected at the sub-solar point, although the 

night-time temperature can rise up to 200 K. Systematic errors on the resulting diameter and albedo are 

likely to occur if observations are carried out at large solar phase angle and the thermal emission from 

the night side is ignored. 

2.8.3 Accuracy of the H values 

The accuracy of albedo values derived via thermal models depends strongly on the accuracy of the 

adopted absolute magnitude, H. In those cases in which reliable H-values are not available from other 

sources, we have resorted to estimates based on the values given by the JPL Horizons 

(ssd.jpl.nasa.gov/horizons.html), MPC (cfa-www.harvard. edu/iau/MPEph/MPEph.html), and 

NeoDys (newton.dm.unipi.it/neodys) web sites. It should be noted that the uncertainty in these 

estimates is often large, e.g., ≥ 0.5 mag. In the event that more reliable H-values become available in the 

future, the derived albedo and diameter values given in Chapter 3 can be updated using the convenient 

expressions given by Harris and Harris (1997). 

2.9 Thermophysical models 

It is clear that the STM and its derivatives are based on assumptions which make simplifications to 

the physical processes active at the surface of asteroids. Simple models have obvious limitation when a 

detailed investigation of the physical processes is required from high-quality observational data. The 

main goal of the work on thermophysical models of asteroids has been to introduce a more detailed 

description of the physics which governs thermal effect acting on asteroid surfaces, as compared to 

simple thermal models. Several authors have worked on this topic. For example, Brown (1985) 

introduced ellipsoids to describe the shapes of asteroids. Spencer (1990) introduced heat conduction in 
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combination with surface roughness. Lagerros (1996, 1997, 1998, and references therein) collected, 

combined, and extended these and other approaches into a single working model.   

Clearly, thermophysical models are to be preferred over the simple models for accurate results. 

However, in the case of NEAs, parameters which are required by more complex models, such as shape, 

thermal inertia, pole orientation, and surface roughness, are normally not known. So, while complex 

models, such as those described by Lagerros, are important for furthering our understanding of the 

asteroid thermal processes, their use has severe limitations to derive sizes and albedos of NEAs for 

which a limited number of radiometric data are available. 

2.10 Summary 

Observations in the thermal infrared enable albedos and diameters to be derived and give some 

insight into the thermal properties of an object. 

Thermal infrared radiation carries direct information on the size of the object. However, with limited 

sampling of the spectral energy distribution and with the typical measurement accuracy achieved in the 

medium infrared from the ground, an unconstrained solution to the problem of Eq 2-3 is unstable. 

Thermal models are thus required to derive diameters and albedos from radiometric measurements.  

The STM was shown to provide reliable diameters and albedos for most large main belt asteroids. 

However, its use in the case of NEAs gives albedos that are generally too high compared to the results 

expected from their taxonomic classification.  

The failure of the STM to derive reliable albedos for NEAs is very likely due to the different thermal 

properties of these objects when compared to large MBAs. With their small force of gravity and their 

very irregular surfaces, NEAs cannot retain a thick layer of insulating regolith and should have more 

exposed rock than what main belt asteroids have. This results in larger thermal inertias and consequently 

the hypothesis of instantaneous thermal equilibrium with sunlight at all points on their surface to break 

down.  

The FRM was introduced to derive diameters and albedos of objects which rotate rapidly and/or 

have high thermal inertia.  STM and FRM usually give very different results and choice of which model 

to use for a particular NEA, in the absence of additional information, is often quite arbitrary. 

Harris (1998) have shown that neither the STM nor the FRM provide good fits to the measured 

spectral energy distribution of the thermal emission of NEAs. However, the fit is considerably 

improved if the NEATM (a modified STM) is used with a beaming parameter η≥1. The larger beaming 
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parameters, compared with the value of 0.756 used in the IRAS STM for main-belt asteroids, are 

consistent with the results of previous authors suggesting that NEAs have larger surface thermal inertias 

in general than main-belt asteroids.  

Moreover, the use of the NEATM allows a first-order correction for the effects of rotation, surface 

roughness and thermal inertia by fitting the beaming parameter η to the multi-wavelength data to match 

the observed color temperature. 

Application of all three thermal models gives some idea of the modeling uncertainties involved in the 

measurement of NEA diameters and albedos. 

 




