dc.contributor.author
Diestel, Antje
dc.date.accessioned
2018-06-07T22:56:12Z
dc.date.available
2003-12-12T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/9829
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-14027
dc.description
Titelblatt und Inhalt
1 EINLEITUNG 1
1.1 Inflammatorische Schädigungen des Hirngewebes 1
1.2 Mikroglia - immunkompetente Zellen des Gehirns 3
1.3 Der Hippokampus 24
1.4 Die Poly(ADP-ribose)-Polymerase-1 (PARP-1) 28
1.5 Zielsetzung 35
2 MATERIAL 36
2.1 Chemikalien 36
2.2 Proteine, Enzyme und Primer 37
2.3 Zellkultur 38
2.4 Organotypische hippokampale Schnittkulturen 39
2.5 Sonstige Stoffe und Materialien 39
2.6 Geräte 40
3 METHODEN 41
3.1 Zellkultur 41
3.2 Klonierung eines antisense PARP-1-und eines antisense CD11a-Vektors 43
3.3 Transfektion von BV-2 Zellen und primärer Mikroglia 56
3.4 Superkultivierung vormarkierter Mikrogliazellen auf organotypischen
hippokampalen Schnittkulturen (OHSK) 65
3.5 Versuche am Zellkulturmodell 72
3.6 Statistische Verfahren 76
4 ERGEBNISSE 78
4.1 Klonierung eines antisense PARP-1-Vektors 78
4.2 Transfektion von BV-2 Zellen mit dem antisense PARP-1-Vektor 84
4.3 Superkultivierung vormarkierter antisense PARP-1 BV-2 Mikrogliazellen auf
organotypischen hippokampalen Schnittkulturen 86
4.4 Messung der Expression von Adhäsionsmolekülen auf antisense
PARP-1-transfizierten BV-2 Zellen 96
4.5 Klonierung eines antisense CD11a-Vektors 98
4.6 Transfektion von BV-2 Zellen mit dem antisense CD11a-Vektor 101
4.7 Superkultivierung vormarkierter antisense CD11a BV-2 Mikrogliazellen auf
organotypischen hippokampalen Schnittkulturen und Analyse der
regionspezifischen Migration 103
4.8 Untersuchungen zur PARP-1-regulierten mikroglialen CD11a-Expression 106
4.9 Inhibition der PARP-1 in primären Mikrogliazellen 114
4.10 Zusammenfassung der Ergebnisse 123
5 DISKUSSION 125
5.1 Methodentechnische Diskussion 126
5.2 Funktion der PARP-1 bei der Aktivierung und Migration von Mikrogliazellen
und Monozyten/Makrophagen 142
5.3 Die mikrogliale PARP-1-Hemmung als therapeutische Option 146
6 ZUSAMMENFASSUNG / SUMMARY 149
7 ABKÜRZUNGSVERZEICHNIS 153
8 LITERATURVERZEICHNIS 158
9 ANHANG
I DANKSAGUNG
III PUBLIKATIONSLISTE
IV EIDESSTATTLICHE ERKLÄRUNG
dc.description.abstract
Mikrogliazellen sind hochreaktive, mobile und multifunktionelle Zellen des
zentralen Nervensystems, die sowohl im gesunden als auch im erkrankten Gehirn
eine wichtige Rolle einnehmen. Residente Mikrogliazellen weisen einen
herunterregulierten Immunphänotyp auf, der durch eine spezielle Morphologie
und einen Mangel an endozytotischer und phagozytotischer Aktivität
gekennzeichnet ist. In diesem Zustand sind die Zellen speziell an die
Mikroumgebung des ZNS adaptiert und erfüllen im gesunden Gehirn als
immunkompetente Zellen eine überwachende Funktion, wobei Mikroglia nicht nur
auf Veränderungen der strukturellen Integrität im Gehirn, sondern auch auf
verschiedenste Veränderungen in ihrer Mikroumgebung, hoch sensitiv reagieren
kann. Bei neuroinflammatorischen Prozessen im Gehirn können Mikrogliazellen
aktiviert werden und in die Gebiete der neuronalen Degeneration migrieren,
Neurone phagozytieren und große Mengen an freien Radikalen und zytotoxischen
Zytokinen produzieren. Diese Faktoren tragen zu einem massiven neuronalen
Sekundärschaden bei, der zu Ausfällen von Hirnfunktionen führen kann. Als
Antwort auf einen zellulären Schaden durch Sauerstoffradikale oder durch eine
Exzitotoxizität wird das nukleäre Enzym Poly(ADP-Ribose)-Polymerase-1 (PARP-1)
aktiviert. Die PARP-1 katalysiert unter Abspaltung von Nikotinamid den
Transfer von ADP-Ribose-Einheiten aus NAD+ auf spezifische Akzeptorproteine.
Diese Poly(ADP-Ribosyl)ierungsreaktion bewirkt eine posttranslationelle
Modifikation nukleärer Proteine. Um die Rolle der PARP bei der
Mikrogliaaktivierung aufzuklären, wurde zunächst ein antisense PARP-1-Vektor
(asPARP-1) kloniert. Mit diesem Vektor wurden BV-2 Mikrogliazellen stabil
transfiziert und in Versuchen mit NMDA-geschädigten organotypischen
hippokampalen Gewebeschnittkulturen (OHSK) eingesetzt, um Untersuchungen zum
neuronalen Zelltod und zur mikroglialen Migration dieser Zellen durchzuführen.
Während BV-2 Zellen, die mit dem Kontrollvektor transfiziert worden waren, zur
Ausbildung eines ausgeprägten neuronalen Sekundärschadens führten, konnte
dieser in Gewebeschnitten nach der Zugabe von asPARP-1-transfizierten Zellen
komplett aufgehoben werden. Weiterhin zeigten die Ergebnisse zur Analyse des
Migrationsverhaltens, daß Kontrollvektor-transfizierte Zellen in der Lage
waren, regionspezifisch in die Gebiete der neuronalen Schädigung einzuwandern,
während asPARP-1-transfizierte Mikrogliazellen dies nicht taten und diffus im
Schnitt verteilt zu finden waren. Nachfolgende Untersuchungen beschäftigten
sich mit der Aufklärung des Signalweges, über den die PARP-1 die funktionellen
Eigenschaften der regionspezifischen Migration kontrolliert. FACS-Messungen
zeigten dabei eine verminderte Expression des β2-Integrins CD11a in asPARP-1
Mikrogliazellen im Vergleich zu Kontrollvektor-transfizierten Zellen, während
die Expressionsmuster anderer Moleküle wie CD11b, CD18 und ICAM-1 unverändert
blieben. Nach der Klonierung eines antisense CD11a-Vektors (asCD11a) wurden
BV-2 Mikrogliazellen stabil mit diesem Vektor transfiziert und in OHSK, nach
exzitotoxischer Schädigung mit NMDA, das Migrationsverhalten dieser Zellen
analysiert. Mikrogliazellen, die mit dem asCD11a-Vektor transfiziert worden
waren, konnten nicht in die Regionen der neuronalen Schädigung einwandern,
während Kontrollvektor-transfizierte Zellen eine zielgerichtete Invasion in
die Neurodegenerationsgebiete zeigten. Immunoblot Analysen von isolierten
Zellkernen nach der Inhibition der PARP-1 mit 3-ABA zeigten eine Inhibierung
der PARP-1-Aktivität und eine reduzierte Expression des β2-Integrins CD11a in
der FACS-Messung. Mit den Ergebnissen der Northern Blot Analysen konnte
ermittelt werden, daß die CD11a-mRNA-Expression auf transkriptioneller Ebene
zum Teil durch eine Kooperation der PARP und des Transkriptionsfaktors NF-κB
reguliert wird. Ko-Immunpräzipitationen, in die das HMG-1 (Y) Protein
miteinbezogen wurde, zeigten weiterhin eine direkte Protein-Protein-
Interaktion des HMG-1 (Y) mit dem PARP-1-NF-κBKomplex über die aktivierte und
poly(ADP-ribosyl)ierte PARP in LPS aktivierten Zellen. Weiterhin wurden
Experimente mit primären Mikrogliazellen durchgeführt. Mittels einer neu
etablierten Methode über PAMAM-Dendrimere erfolgte die transiente Transfektion
der Primärzellen mit dem asPARP-1-Vektor. OHSK zeigten nach NMDA-Schädigung
und dem Transfer von Kontrollvektortransfizierten Zellen die Ausbildung eines
massiven neuronalen Sekundärschadens, während durch die Zugabe von
asPARP-1-transfizierten primären Mikrogliazellen dieser Schaden komplett
verhindert werden konnte. Untersuchungen zum Migrationsverhalten zeigten, daß
Kontrollvektor transfizierte Zellen regionspezifisch in die Läsionsgebiete
migrierten, während Primärzellen, die mit dem asPARP- 1-Vektor transfiziert
worden waren, nicht zielgerichtet einwanderten. Damit konnten die Ergebnisse,
die durch funktionelle Analysen mit der permanenten Zellinie BV-2 gemacht
worden waren, mit primären Mikrogliazellen bestätigt werden. Zusammenfassend
konnte in der vorliegenden Arbeit gezeigt werden, daß die PARP-1 in
aktivierten Mikrogliazellen die Expression des migrationsrelevanten Integrins
CD11a über eine direkte Protein-Protein-Interaktion, bestehend aus der poly
(ADP-ribosyl-)ierten PARP-1, dem Transkriptionsfaktor NF-κB-und dem HMG-1 (Y)
Protein, kontrolliert und durch die Hemmung der PARP-1 die Neurone in lebendem
Hirngewebe komplett vor einem Sekundärschaden geschützt werden können. Damit
wurde zum einen ein grundsätzlich neues Regulationsprinzip der Integrin-
Expression beschrieben und zum anderen mit der PARP ein molekulares
Zielprotein identifiziert, an dem neue therapeutische Strategien zur
Neuroprotektion nach einer exzitotoxischen Schädigung ansetzen können.
de
dc.description.abstract
This study focused on the regulation of microglial activation after
excitotoxic injury in organotypic hippocampal brain tissue (OHSCs). During
neuroinflammation, activated microglial cells migrate towards sites of
neuronal injury, phagocytose damaged cells and produce large amounts of oxygen
free radicals and toxic cytokines, which might contribute to severe secondary
neuronal damage and cell death and account for most of the loss of brain
function. In response to cellular damage by oxygen free radicals or
excitotoxicity, a rapid and strong activation of the nuclear enzyme poly(ADP-
ribose) polymerase, which catalyses the synthesis of poly(ADP-ribose) (PARP)
attached to protein acceptors, occurs in damaged cells. To test the function
of PARP in activated microglial cells we first cloned an antisense PARP-1
pcDNA 3.1 vector (asPARP) and transfected BV-2 microglial cells with it.
Stably transfected cells were used in studies with NMDA-damaged OHSCs,
enabling observation of the effects of neuronal cell death and microglial
invasion. Whereas control-vector-transfected microglial cells contributed to
severe secondary damage, this secondary damage was completely abolished when
microglial cells lacked PARP-1. Moreover, the invasion of microglial cells
into sites of neuronal damage demonstrated that control-vector-transfected
microglial cells were capable of strongly migrating to sites of
neurodegeneration, whereas no site-specific migration was detected in
hippocampal brain tissue incubated with asPARP-1 microglial cells. Thereafter,
studies were focused on revealing the pathway which links PARP-1 to the
functional feature of site-specific migration towards regions of neuronal
injury. FACS analysis showed a greatly decreased expression pattern of the
ß2-Integrin CD11a in asPARP-1 microglial cells in comparison to control-
vector-transfected cells, whereas the expression of other adhesion molecules
such as CD11b, CD18 and ICAM-1 remained unchanged. The next step was the
cloning of an anti-sense CD11a pcDNA3.1(+) vector (asCD11a) and establishment
of a stably transfected microglial cell line. These microglial cells were
transferred to the surface of NMDA-damaged OHSCs in which microglial invasion
was being investigated. Microglial cells transfected with the asCD11a vector
were not capable of migrating specifically, whereas controlvector- transfected
microglial cells migrated strongly into regions of neuronal injury. Immunoblot
analysis of isolated nuclei and inhibition of PARP by 3-ABA showed expressed
but inhibited PARP-1 and a decreased CD11a expression, as determined by FACS
analysis. The results of the Northern blot analysis indicate that Cd11a mRNA
expression is partly regulated transcriptionally by a cooperative action of
PARP and NF-κB. Moreover, co-immunoprecipitation experiments involving the
HMG-1 (Y) protein, a major interaction protein of poly(ADP-ribosyl)ated
PARP-1, showed a direct proteinprotein interaction of HMG-1 (Y) with the
PARP-1-NF-κB-complex through poly(ADP-ribosyl)ated PARP in LPS-activated cells
but not in resting microglial cells or microglial cells with inhibited PARP-1.
Further independent experiments were performed with primary microglial cells
transiently transfected with the antisense pcDNA3.1(+) vector using a modified
polyamidoamine (PAMAM) dendrimer method. Transfer of control-vector-
transfected primary microglial cells onto NMDAdamaged OHSCs contributed to
secondary damage. After transfer of asPARP-1-transfected microglial cells,
this secondary damage was completely abolished. Investigations into the
capacity of asPARP-1 cells to migrate towards regions of neuronal injury
demonstrated that control-vector-transfected primary micoglial cells migrated
specifically into sites of neuronal injury in contrast to asPARP-1-
transfected primary microglial cells, which were not capable of a site-
specific migration, confirming the tendency of the experiments with the
asPARP-1-transfected BV-2 cell line. In conclusion, specific downregulation of
PARP in microglial cells was capable of completely protecting neurons in
living organotypic brain tissue from secondary damage via an intracellular
PARP-1 dependent pathway involved in microglial activation and the expression
of the migrationrelevant adhesion molecule CD11a. These findings demonstrate
the crucial role of PARP in microglial activation and migration, and render
PARP a potential therapeutic target for protecting neurons from secondary
damage.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
microglial migration
dc.subject
poly(ADP-ribose)-polymerase-1
dc.subject
hippocampal slice cultures
dc.subject
neurodegeneration
dc.subject
Integrin CD11a
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
FUNKTION DER POLY(ADP-RIBOSE)-POLYMERASE-1 BEI DER INFLAMMATORISCHEN
SCHÄDIGUNG VON NEURONEN DURCH AKTIVIERTE MIKROGLIAZELLEN
dc.contributor.firstReferee
Prof. Dr. Robert Nitsch
dc.contributor.furtherReferee
Prof. Dr. Hans Joachim Pflüger
dc.date.accepted
2003-11-19
dc.date.embargoEnd
2004-01-27
dc.identifier.urn
urn:nbn:de:kobv:188-2003003236
dc.title.translated
Function of poly(ADP-ribose)-polymerase-1 in inflammatory damage to neurons of
activated microglial cells
en
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000000855
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2003/323/
refubium.mycore.derivateId
FUDISS_derivate_000000000855
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access