While the Dead Sea basin has been studied for a long time, the available knowledge about the detailed seismicity distribution in the area, as well as the deeper structure of the basin, is limited. Therefore, within the framework of the international project DESIRE (Dead Sea Integrated Research Project), a temporary local seismological network was operated in the southern Dead Sea area. 65 stations registered 655 events within 18 month of observation time. A subset of 530 well locatable events were used to calculate a minimum 1-D model for P - and S - wave velocity. This minimum 1-D model served as an initial reference model for a vp and vp/vs tomography. Since the study area is at first order two-dimensional, a gradual approach was chosen, which compromised a 2-D inversion followed by a 3-D inversion. The sedimentary basin, clearly imaged through low P velocities and high vp/vs ratios, shows an asymmetric structure with a vertical eastern boundary and an inclined western boundary. The lower boundary of the basin, indicated by a large gradient of the P velocity, is found at 17 km depth. The boundary between fluid containing sediments, deposited during the formation of the basin, and pre-basin sediments is found between 10 and 15 km depth through contrasts in the vp/vs ratios. The Lisan salt diapir is furthermore imaged through low vp/vs ratios. Accurate earthquake locations are only revealed by tomographic inversions. The seismicity is concentrated in the upper crust down to 20 km depth while the lower limit of the seismicity is reached at 29 km depth. The seismic events at the eastern boundary fault in the southern part of the study area, represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. North of the Boqeq fault the seismic activity, mostly related to the contrast between fluid containing sediments and ”dry” rocks, represent the transfer of the motion in the pull-apart basin from the eastern to the western boundary.
Während das Sedimentbecken des Toten Meeres im allgemeinen schon seit langem erforscht wird, ist die genaue Verteilung der Seismizität im Gebiet des Beckens sowie seine tiefere Struktur kaum bekannt. Deshalb wurde innerhalb des internationalen Projekts DESIRE (DEad Sea Integrated REsearch project – Integriertes Forschungsprojekt am Toten Meer) ein temporäres seismologisches Netzwerk im Bereich des südlichen Toten Meeres installiert. 65 Stationen registrierten 655 lokale Erdbeben innerhalb von 18 Monaten. 530 gut lokalisierbare Beben wurden ausgewählt um ein 1-D Geschwindig-keitsmodel für P- und S-Wellen zu berechnen. Dieses 1-D Model wurde dann als Startmodel für eine vp und vp/vs Tomographie verwendet. Da das Studiengebiet in erster Ordnung eine 2-D Struktur aufweist, wurde ein gradueller Ansatz gewählt, bei dem zuerst eine 2-D Tomographie berechnet wird, gefolgt von einer 3-D Tomographie. Das Sedimentbecken, abgebildet durch tiefe vp und hohe vp/vs Verhältnisse, zeigt eine asymmetrische Struktur mit einer senkrechten östlichen Randstörung und einem geneigten westlichen Rand. Die Untergrenze des Sedimentbeckens, angezeigt durch einen hohen Gradient von vp, wurde in 17 km Tiefe gefunden. Der Übergang zwischen Sedimenten mit hohem Fluidgehalt, abgelagert nach Beginn der Beckenbildung, und den Sedimenten, die sich schon vor Beginn der Beckenentstehung abgelagert hatten, wurde in Tiefen zwischen 10 und 14 km lokalisiert, abgebildet durch starke Kontraste in den vp/vs Verhältnissen. Die genaue Bestimmung von Hypozentren im Untersuchungsgebiet ist nur durch tomographische Inversionsrechnung möglich. Die Seismizität konzentriert sich in der oberen Kruste bis 20 km Tiefe, während die tiefsten Beben in 29 km Tiefe gefunden wurden. Die Seismizität an der östlichen Randstörung im Süden des Untersuchungsgebiets repräsentiert die Nordwärtsbewegung der Arabischen Platte entlang der Toten Meer Transformstörung. Nördlich der Boqeq Störung findet der Transfer der Bewegung im Blattverschiebungsbecken (engl. pull-apart basin) von der östlichen Hauptstörung auf die westlichen Störungen statt. Die Seismizität tritt hier vor allem am Übergang zwischen fluidhaltigen und “trockenen” Gesteinen auf.