dc.contributor.author
Baytekin, Bilge
dc.date.accessioned
2018-06-07T22:16:58Z
dc.date.available
2008-11-11T08:55:24.277Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/9082
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-13281
dc.description
Index I. AN EASILY ACCESIBLE TOOLBOX OF FUNCTIONALIZED MACROCYCLES AND
ROTAXANES………………………………1 1\. Purpose of Study…………………………………………………….…..1 2\.
Introduction……………………………………………………………..4 2.1. Macrocycles, catenanes and
rotaxanes: Functional supramolecular elements for molecular
machines………………………………...…………4 2.2. Macrocycles, catenanes and rotaxanes:
Template Directed Synthesis and Functionalization………………………………………………...…………10
2.2.1. Template Directed Synthesis of Catenanes and Rotaxanes………….10 2.2.2.
Anion and Amide Templated Synthesis of Catenanes and Rotaxanes.11 2.3.
Functionalization of Supramolecular Architectures……………...………14 2.3.1. Early
Considerations and Functionalization of Macrocycles for Sensor
Design…………………………………………………………..……14 2.3.2. Functionalization of Supramolecules
- Modes of Functionalization…16 2.3.2.1. Post-functionalization Assembling
(Post- functionalization Threading) and Post-assembly Functionalization (Post-
threading Functionalization)……………………………..……16 2.3.2.2. Endo- and Exo-
Functionalization of Supramolecules…...…18 2.3.3. Functionalization of
Supramolecules and Supramolecular Assemblies – Functional
Groups……………………………………………………………20 2.4. Self-Assembly: Combining and Addressing
the Molecular Motion……..23 2.4.1. Self Assembled Systems, Reversibility and
Supramolecular Chemistry…………………………………………………………….23 2.4.2. Metal-Directed Self-
Assembly of Pseudorotaxanes, Rotaxanes and Catenanes…………………………………………………………….25
2.4.3. Covalent Self-Assembly……………………………………...………29 2.5. Covalently Bound
Interlocked Architectures……………………………. 30 2.6. Chirality in Supramolecular
Systems: Topological Chirality in Interlocked
Systems……………………………………………………...…31 2.7. Energy Transfer in Interlocked
Compounds…………………….………..33 2.8. An Easily Accessible Toolbox: Classical vs
Toolbox-Oriented Synthesis…………………………………………………………………….35 2.8.1. Practical
Emergence of the Tool-Box Oriented Synthesis………...…38 2.8.2. Applying the
Tool-Box Oriented Supramolecular System Synthesis to Generate a Tool-Box of
Tetralactam Macrocycle Based Functionalized Supramolecular
Architectures……………………………………..…42 3\. Results and
Discussion………………………………………...………45 3.1. Syntheses of the Key
Compounds…………………………………...……..45 3.2. Functionalization of the
Macrocycles………………………………...……50 3.2.1. Functionalization of the Key Macrocycles
by Suzuki Coupling Reactions………………………………………………………..……50 3.2.1.1.Syntheses of
Macrocycles for Self-Assembly…………………...50 3.2.1.2.Unsymmetrical
functionalization on the tetralactam macrocycle: Pyrene-pyridine
macrocycle………………...……53 3.2.1.3.Syntheses of Macrocycles for Multivalency and
Photophysical Studies……………………………………………………………….54 3.2.2. Functionalized
Macrocycles by Other Methods Than Coupling
Reactions…………………………………………………………..…55 3.3. Studies on Functionalized
Macrocycles……………………………………57 3.3.1. Studies on Macrocycles with Photoactive
Groups: Host-guest chemistry……………………………………………………………..57 3.3.2. Studies on
Macrocycles with Photoactive Groups: Absorbance
Measurements………………………………………………………..59 3.3.3. Studies on Macrocycles with
Photoactive Groups: Multivalent hosts.61 3.4. Syntheses of Functionalized
Rotaxanes……………………………………66 3.4.1. Post-threading Functionalization of Key
Rotaxanes by Suzuki Coupling……………………………………………………………...66 3.4.2. Direct
Synthesis of Rotaxanes From Functionalized Macrocycles..…68 3.5. Synthesis of
a Functionalized Catenane…………………………………...69 3.6. Synthesis of Chiral Rotaxane
and Catenane From an Achiral Macrocycle…………………………………………………………………..70 3.7.
Energy Transfer Systems…………………………………………………...72 3.7.1. Synthesis of
Functionalized Stoppers for The Energy Transfer
Systems………………………………………………………………72 3.7.2. Synthesis of Rotaxanes for Studies of
Intrarotaxane Energy-Transfer………………………………………………………………76 3.8. Self-Assembled
Systems with Functionalized Macrocycles and
Rotaxanes……………………………………………………………………77 3.8.1. Metal-Directed Self-Assembly of
Macrocycles and Rotaxanes……...77 3.8.2. Covalent Self-Assembly of
Macrocycles…………………………….84 3.8.2.1.The Functionalized Macrocycyles in Covalent
Self-Assembly…………………………………………………………….84 3.8.2.2.The Template for Covalent
Self-Assembly of Macrocycles…...85 3.8.2.3.The Covalent Assembly with Aldehyde
Macrocycle and a Trisamine………………………………………………...…………85 4\. Conclusion and
Outlook………………………………………………86 4.1. Toolbox Synthesis………………………………………….………86 4.2.
Outlook: Energy Transfer Systems and Layer-by-layer Self-
Assembly.................................................................................................87
II. A (TANDEM) ESI-FTICR MASS SPECTROMETRIC STUDY ON FRÉCHET-TYPE DENDRIMERS
WITH AMMONIUM CORES…………………………………………………………………90 1\. Purpose of the Study and
Introduction………………………………90 2\. Results and Discussion……………………………………...…………91
2.1. ESI Mass Spectrometric Characterization of Fréchet Dendrons….…….91 2.2.
Dendritic Viologens: The Effect of Dendron Size on Dication
Stability...........................................................................................................95
2.3. Collision-Induced Decay of Dendrimers Bearing Ammonium Ions at Their
Focal Points………………………………………………………..…97 2.3.1. Direct Peripheral Cleavage
Mechanism…………………….………..98 2.3.2. In-to-Out Benzyl-Tropylium Rearrangement
Cascade………………99 2.3.3. Cyclophane Formation Mechanism…………………………………104 2.3.4.
In-to-Out SEar Cascade Mechanism 1……………………………….105 2.3.5. In-to-Out SEar
Cascade Mechanism 2……………………….………106 2.3.6. Investigations on the Mechanism
with Different Peripheral Groups……………………………………………………………....107 3\.
Conclusions……………………………..…………………………….108 III. HIERARCHICAL SELF-ASSEMBLY OF
METALLO-SUPRAMOLECULAR NANO-SPHERES…………………………109 1\. Purpose of the Study and
Introduction…………..…………………109 2\. Results and Discussion……………………………………….………110
2.1. Synthesis of self-assembled metallo-supramolecular polymers and
preparation of metallo-supramolecular nano-spheres and vesicles……110 2.2.
Imaging of metallo-supramolecular nano-spheres and vesicles…….….114 3\.
Conclusion and Outlook……………………………………………..116 Experimental
Part……………………………………………………..……118 E.1. Analytical
Techniques…………………………………………….………118 E.2. Solvents and Other
Chemicals……………………………………………120 E.3. Abbreviations………………………………………………………...……120
E.4. Synthetical Procedures……………………………………………………121 E.4.1. Preliminary
Compounds for the Tool-Box…………………………121 E.4.2. Stoppers
syntheses…………………………………………………..132 E.4.3. Functionalized Macrocycles, Catenanes
and Rotaxanes through Coupling Reactions…………………………………………………137 E.4.4.
Functionalized Macrocycles by other methods than coupling
reactions…………………………………………………………….158 E.4.5.
Rotaxanes……………………………………………………...……161 E.4.5.1.Functionalized rotaxanes through
classical rotaxane synthesis…………………………………………………………...161 E.4.5.2. Amide-axle
rotaxanes…………………………………………...166 E.4.5.3. Suzuki coupling on
rotaxanes………………………………….167 E.4.5.4. Enantiomeric
rotaxanes………………………………………...169 E.4.6. Syntheses of energy-transfer
rotaxanes……………………………..170 E.4.7. Assemblies and Metal
Complexes…………………………………..174 E.4.8. Frechet Dendrimers (Part
II)………………………………………..180 E.4.9. Hunter Ligand and Related Control Compounds
(Part III)…………180 E.5. TEM experiments………………………………………………………….185 Summary /
Zusammenfassung………………………………………….187 References and
Notes……………………………………………………….188 Curriculum Vitae……………………………………………………………202
Acknowledgements………………………………………………………….205
dc.description.abstract
Bottom-to-top approach has lately gained more attention in nanotechnology for
building new functional materials. However, the gap between the well-studied
supramolecular architectures with promising features and the functional nano-
materials is still a challenge for the chemists. Molecular machinery, which is
a part of nanotechnological research, requires building blocks that are easily
achievable, tuneable and working with high efficiency. Moreover, the assembly
of these building blocks in specially designed ways is needed to achieve
complex architectures. Macrocycles and rotaxanes have been well investigated
as components of molecular machines so far by others. Even though there are
uncountable examples of such systems with possible use in nanotechnology, the
above mentioned gap is still present for them. In the first part of this work,
not only different functional groups are incorporated in tetralactam
macrocycles and rotaxanes in a straightforward way to obtain various different
architectures but also ways to assemble them into higher structures are shown.
The various possible uses of these architectures are stated and as an example,
energy transfer systems are synthesized. In the second part, Fréchet
dendrimers are investigated by a powerful analytical tool for supramolecular
chemistry, electrospray ionization mass spectrometry. In this study, the
defects that result from syntheses of these dendrimers are analysed. Then, an
interesting and novel fragmentation pattern encountered in collision induced
dissociation experiments is presented, to which several mechanisms are
proposed and discussed. The last part of the thesis is another approach to
functional supramolecular architectures: Self-assembled nano-spheres. The
study is the display of a discovery of a previously-not-known way of building
up nano-spheres from coordination polymers of simple organic ligands and metal
complexes.
de
dc.description.abstract
Um funktionelle Materialien aufzubauen, hat der “Bottom-to-Top”-Ansatz in der
letzten Zeit mehr Aufmerksamkeit in der Nanotechnologie gewonnen. Allerdings
ist die Lücke zwischen gut bekannten supramolekularen Architekturen mit
vielversprechenden Eigenschaften und funktionellen Nanomaterialen immer noch
eine Herausforderung für Chemiker. Molekulare Maschinen, ein Teil der
Forschung auf dem Gebiet der Nanotechnologie, benötigt Bausteine, die leicht
zu machen und zu modifizieren sind und mit hoher Effizienz arbeiten. Ferner
ist eine definierte, planbare Anordnung der molekularen Bausteine notwendig,
um komplexe Architekturen zu erreichen. Makrozyklen und Rotaxane sind bereits
von anderen als Komponenten von molekularen Maschinen studiert worden. Auch
wenn es schon unzählbare Beispiele für solche Systeme mit einer möglichen
Anwendung in der Nanotechnologie gibt, ist dennoch die oben erwähnte Lücke
auch für diese vorhanden. Im ersten Teil der Arbeit werden nicht nur
verschiedene funktionelle Gruppen in Tetralactammakrozyklen und -rotaxanen
direkt inkorporiert um verschiedene von einander unterschiedliche
Architekturen zu erhalten, sondern auch verschiedene Wege aufgezeigt, diese zu
höheren Strukturen zu arrangieren. Die mannigfaltigen denkbaren Strukturen
werden dargelegt. Als Beispiel wurden Energietransfersysteme synthetisiert. Im
zweiten Teil der Arbeit wird die Analyse von Fréchetdendrimeren mit einem
leistungsstarken Werkzeug der supramolekularen Chemie, der Elektrospraymassen-
spektrometrie, dargestellt. In dieser Studie werden zunächst die Defekte
resultierend aus der Synthese der Dendrimere untersucht. Anschließend wird ein
neues und interessantes Fragmentationmuster beschrieben, zu dem verschiedene
Mechanismen vorgeschlagen und diskutiert werden. Der letzte Teil zeigt eine
weitere Annäherung auf dem Weg zu funktionellen, supramolekularen Strukturen
auf: Selbstorganisierte Nanosphären. Der bis vor kurzem unentdeckte Ansatz,
Nanosphären aus Koordinationspolymeren, die aus einfachen organischen Liganden
und Metallkomplexen bestehen, aufzubauen, wird gezeigt.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
supramolecular chemistry
dc.subject
mass spectrometry
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.title
An easily accessible toolbox of functionalized macrocycles and rotaxanes
dc.contributor.firstReferee
Prof. Dr. Christoph A. Schalley
dc.contributor.furtherReferee
Prof. Dr. Rainer Haag
dc.date.accepted
2008-11-05
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000006013-6
dc.title.subtitle
a (tandem) ESI-FTICR mass spectrometric study on Fréchet-type dendrimers with
ammonium cores and hierarchical self-assembly of metallo-supramolecular nano-
spheres
dc.title.translated
Eine leicht zugängliche "Toolbox" bestehend aus funktionalisierten Makrozyklen
und Rotaxanen
en
dc.title.translatedsubtitle
ESI-FTICR (Tandem) massenspektrometrische Studien an Frechet Dendrimeren mit
Ammonium-Kernen und hierarchische Selbstorganisation von
metallosupramolekularen Nano-Sphären
en
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000006013
refubium.mycore.derivateId
FUDISS_derivate_000000004626
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access