id,collection,dc.contributor.author,dc.contributor.firstReferee,dc.contributor.furtherReferee,dc.contributor.gender,dc.date.accepted,dc.date.accessioned,dc.date.available,dc.date.issued,dc.description,dc.description.abstract[de],dc.format.extent,dc.identifier.uri,dc.identifier.urn,dc.language,dc.rights.uri,dc.subject,dc.subject.ddc,dc.title,dc.title.subtitle,dc.title.translated[en],dc.title.translatedsubtitle[en],dc.type,dcterms.accessRights.dnb,dcterms.accessRights.openaire,dcterms.format[de],refubium.affiliation[de],refubium.mycore.derivateId,refubium.mycore.fudocsId "b81f1a71-af57-46df-b815-d3cb2600c629","fub188/14","Baytekin, Bilge","Prof. Dr. Christoph A. Schalley","Prof. Dr. Rainer Haag","n","2008-11-05","2018-06-07T22:16:58Z","2008-11-11T08:55:24.277Z","2008","Index I. AN EASILY ACCESIBLE TOOLBOX OF FUNCTIONALIZED MACROCYCLES AND ROTAXANES………………………………1 1\. Purpose of Study…………………………………………………….…..1 2\. Introduction……………………………………………………………..4 2.1. Macrocycles, catenanes and rotaxanes: Functional supramolecular elements for molecular machines………………………………...…………4 2.2. Macrocycles, catenanes and rotaxanes: Template Directed Synthesis and Functionalization………………………………………………...…………10 2.2.1. Template Directed Synthesis of Catenanes and Rotaxanes………….10 2.2.2. Anion and Amide Templated Synthesis of Catenanes and Rotaxanes.11 2.3. Functionalization of Supramolecular Architectures……………...………14 2.3.1. Early Considerations and Functionalization of Macrocycles for Sensor Design…………………………………………………………..……14 2.3.2. Functionalization of Supramolecules - Modes of Functionalization…16 2.3.2.1. Post-functionalization Assembling (Post- functionalization Threading) and Post-assembly Functionalization (Post- threading Functionalization)……………………………..……16 2.3.2.2. Endo- and Exo- Functionalization of Supramolecules…...…18 2.3.3. Functionalization of Supramolecules and Supramolecular Assemblies – Functional Groups……………………………………………………………20 2.4. Self-Assembly: Combining and Addressing the Molecular Motion……..23 2.4.1. Self Assembled Systems, Reversibility and Supramolecular Chemistry…………………………………………………………….23 2.4.2. Metal-Directed Self- Assembly of Pseudorotaxanes, Rotaxanes and Catenanes…………………………………………………………….25 2.4.3. Covalent Self-Assembly……………………………………...………29 2.5. Covalently Bound Interlocked Architectures……………………………. 30 2.6. Chirality in Supramolecular Systems: Topological Chirality in Interlocked Systems……………………………………………………...…31 2.7. Energy Transfer in Interlocked Compounds…………………….………..33 2.8. An Easily Accessible Toolbox: Classical vs Toolbox-Oriented Synthesis…………………………………………………………………….35 2.8.1. Practical Emergence of the Tool-Box Oriented Synthesis………...…38 2.8.2. Applying the Tool-Box Oriented Supramolecular System Synthesis to Generate a Tool-Box of Tetralactam Macrocycle Based Functionalized Supramolecular Architectures……………………………………..…42 3\. Results and Discussion………………………………………...………45 3.1. Syntheses of the Key Compounds…………………………………...……..45 3.2. Functionalization of the Macrocycles………………………………...……50 3.2.1. Functionalization of the Key Macrocycles by Suzuki Coupling Reactions………………………………………………………..……50 3.2.1.1.Syntheses of Macrocycles for Self-Assembly…………………...50 3.2.1.2.Unsymmetrical functionalization on the tetralactam macrocycle: Pyrene-pyridine macrocycle………………...……53 3.2.1.3.Syntheses of Macrocycles for Multivalency and Photophysical Studies……………………………………………………………….54 3.2.2. Functionalized Macrocycles by Other Methods Than Coupling Reactions…………………………………………………………..…55 3.3. Studies on Functionalized Macrocycles……………………………………57 3.3.1. Studies on Macrocycles with Photoactive Groups: Host-guest chemistry……………………………………………………………..57 3.3.2. Studies on Macrocycles with Photoactive Groups: Absorbance Measurements………………………………………………………..59 3.3.3. Studies on Macrocycles with Photoactive Groups: Multivalent hosts.61 3.4. Syntheses of Functionalized Rotaxanes……………………………………66 3.4.1. Post-threading Functionalization of Key Rotaxanes by Suzuki Coupling……………………………………………………………...66 3.4.2. Direct Synthesis of Rotaxanes From Functionalized Macrocycles..…68 3.5. Synthesis of a Functionalized Catenane…………………………………...69 3.6. Synthesis of Chiral Rotaxane and Catenane From an Achiral Macrocycle…………………………………………………………………..70 3.7. Energy Transfer Systems…………………………………………………...72 3.7.1. Synthesis of Functionalized Stoppers for The Energy Transfer Systems………………………………………………………………72 3.7.2. Synthesis of Rotaxanes for Studies of Intrarotaxane Energy-Transfer………………………………………………………………76 3.8. Self-Assembled Systems with Functionalized Macrocycles and Rotaxanes……………………………………………………………………77 3.8.1. Metal-Directed Self-Assembly of Macrocycles and Rotaxanes……...77 3.8.2. Covalent Self-Assembly of Macrocycles…………………………….84 3.8.2.1.The Functionalized Macrocycyles in Covalent Self-Assembly…………………………………………………………….84 3.8.2.2.The Template for Covalent Self-Assembly of Macrocycles…...85 3.8.2.3.The Covalent Assembly with Aldehyde Macrocycle and a Trisamine………………………………………………...…………85 4\. Conclusion and Outlook………………………………………………86 4.1. Toolbox Synthesis………………………………………….………86 4.2. Outlook: Energy Transfer Systems and Layer-by-layer Self- Assembly.................................................................................................87 II. A (TANDEM) ESI-FTICR MASS SPECTROMETRIC STUDY ON FRÉCHET-TYPE DENDRIMERS WITH AMMONIUM CORES…………………………………………………………………90 1\. Purpose of the Study and Introduction………………………………90 2\. Results and Discussion……………………………………...…………91 2.1. ESI Mass Spectrometric Characterization of Fréchet Dendrons….…….91 2.2. Dendritic Viologens: The Effect of Dendron Size on Dication Stability...........................................................................................................95 2.3. Collision-Induced Decay of Dendrimers Bearing Ammonium Ions at Their Focal Points………………………………………………………..…97 2.3.1. Direct Peripheral Cleavage Mechanism…………………….………..98 2.3.2. In-to-Out Benzyl-Tropylium Rearrangement Cascade………………99 2.3.3. Cyclophane Formation Mechanism…………………………………104 2.3.4. In-to-Out SEar Cascade Mechanism 1……………………………….105 2.3.5. In-to-Out SEar Cascade Mechanism 2……………………….………106 2.3.6. Investigations on the Mechanism with Different Peripheral Groups……………………………………………………………....107 3\. Conclusions……………………………..…………………………….108 III. HIERARCHICAL SELF-ASSEMBLY OF METALLO-SUPRAMOLECULAR NANO-SPHERES…………………………109 1\. Purpose of the Study and Introduction…………..…………………109 2\. Results and Discussion……………………………………….………110 2.1. Synthesis of self-assembled metallo-supramolecular polymers and preparation of metallo-supramolecular nano-spheres and vesicles……110 2.2. Imaging of metallo-supramolecular nano-spheres and vesicles…….….114 3\. Conclusion and Outlook……………………………………………..116 Experimental Part……………………………………………………..……118 E.1. Analytical Techniques…………………………………………….………118 E.2. Solvents and Other Chemicals……………………………………………120 E.3. Abbreviations………………………………………………………...……120 E.4. Synthetical Procedures……………………………………………………121 E.4.1. Preliminary Compounds for the Tool-Box…………………………121 E.4.2. Stoppers syntheses…………………………………………………..132 E.4.3. Functionalized Macrocycles, Catenanes and Rotaxanes through Coupling Reactions…………………………………………………137 E.4.4. Functionalized Macrocycles by other methods than coupling reactions…………………………………………………………….158 E.4.5. Rotaxanes……………………………………………………...……161 E.4.5.1.Functionalized rotaxanes through classical rotaxane synthesis…………………………………………………………...161 E.4.5.2. Amide-axle rotaxanes…………………………………………...166 E.4.5.3. Suzuki coupling on rotaxanes………………………………….167 E.4.5.4. Enantiomeric rotaxanes………………………………………...169 E.4.6. Syntheses of energy-transfer rotaxanes……………………………..170 E.4.7. Assemblies and Metal Complexes…………………………………..174 E.4.8. Frechet Dendrimers (Part II)………………………………………..180 E.4.9. Hunter Ligand and Related Control Compounds (Part III)…………180 E.5. TEM experiments………………………………………………………….185 Summary / Zusammenfassung………………………………………….187 References and Notes……………………………………………………….188 Curriculum Vitae……………………………………………………………202 Acknowledgements………………………………………………………….205","Bottom-to-top approach has lately gained more attention in nanotechnology for building new functional materials. However, the gap between the well-studied supramolecular architectures with promising features and the functional nano- materials is still a challenge for the chemists. Molecular machinery, which is a part of nanotechnological research, requires building blocks that are easily achievable, tuneable and working with high efficiency. Moreover, the assembly of these building blocks in specially designed ways is needed to achieve complex architectures. Macrocycles and rotaxanes have been well investigated as components of molecular machines so far by others. Even though there are uncountable examples of such systems with possible use in nanotechnology, the above mentioned gap is still present for them. In the first part of this work, not only different functional groups are incorporated in tetralactam macrocycles and rotaxanes in a straightforward way to obtain various different architectures but also ways to assemble them into higher structures are shown. The various possible uses of these architectures are stated and as an example, energy transfer systems are synthesized. In the second part, Fréchet dendrimers are investigated by a powerful analytical tool for supramolecular chemistry, electrospray ionization mass spectrometry. In this study, the defects that result from syntheses of these dendrimers are analysed. Then, an interesting and novel fragmentation pattern encountered in collision induced dissociation experiments is presented, to which several mechanisms are proposed and discussed. The last part of the thesis is another approach to functional supramolecular architectures: Self-assembled nano-spheres. The study is the display of a discovery of a previously-not-known way of building up nano-spheres from coordination polymers of simple organic ligands and metal complexes.||Um funktionelle Materialien aufzubauen, hat der “Bottom-to-Top”-Ansatz in der letzten Zeit mehr Aufmerksamkeit in der Nanotechnologie gewonnen. Allerdings ist die Lücke zwischen gut bekannten supramolekularen Architekturen mit vielversprechenden Eigenschaften und funktionellen Nanomaterialen immer noch eine Herausforderung für Chemiker. Molekulare Maschinen, ein Teil der Forschung auf dem Gebiet der Nanotechnologie, benötigt Bausteine, die leicht zu machen und zu modifizieren sind und mit hoher Effizienz arbeiten. Ferner ist eine definierte, planbare Anordnung der molekularen Bausteine notwendig, um komplexe Architekturen zu erreichen. Makrozyklen und Rotaxane sind bereits von anderen als Komponenten von molekularen Maschinen studiert worden. Auch wenn es schon unzählbare Beispiele für solche Systeme mit einer möglichen Anwendung in der Nanotechnologie gibt, ist dennoch die oben erwähnte Lücke auch für diese vorhanden. Im ersten Teil der Arbeit werden nicht nur verschiedene funktionelle Gruppen in Tetralactammakrozyklen und -rotaxanen direkt inkorporiert um verschiedene von einander unterschiedliche Architekturen zu erhalten, sondern auch verschiedene Wege aufgezeigt, diese zu höheren Strukturen zu arrangieren. Die mannigfaltigen denkbaren Strukturen werden dargelegt. Als Beispiel wurden Energietransfersysteme synthetisiert. Im zweiten Teil der Arbeit wird die Analyse von Fréchetdendrimeren mit einem leistungsstarken Werkzeug der supramolekularen Chemie, der Elektrospraymassen- spektrometrie, dargestellt. In dieser Studie werden zunächst die Defekte resultierend aus der Synthese der Dendrimere untersucht. Anschließend wird ein neues und interessantes Fragmentationmuster beschrieben, zu dem verschiedene Mechanismen vorgeschlagen und diskutiert werden. Der letzte Teil zeigt eine weitere Annäherung auf dem Weg zu funktionellen, supramolekularen Strukturen auf: Selbstorganisierte Nanosphären. Der bis vor kurzem unentdeckte Ansatz, Nanosphären aus Koordinationspolymeren, die aus einfachen organischen Liganden und Metallkomplexen bestehen, aufzubauen, wird gezeigt.","205 S.","https://refubium.fu-berlin.de/handle/fub188/9082||http://dx.doi.org/10.17169/refubium-13281","urn:nbn:de:kobv:188-fudissthesis000000006013-6","eng","http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen","supramolecular chemistry||mass spectrometry||self-assembly||rotaxane||dendrimer","500 Naturwissenschaften und Mathematik::540 Chemie","An easily accessible toolbox of functionalized macrocycles and rotaxanes","a (tandem) ESI-FTICR mass spectrometric study on Fréchet-type dendrimers with ammonium cores and hierarchical self-assembly of metallo-supramolecular nano- spheres","Eine leicht zugängliche ""Toolbox"" bestehend aus funktionalisierten Makrozyklen und Rotaxanen","ESI-FTICR (Tandem) massenspektrometrische Studien an Frechet Dendrimeren mit Ammonium-Kernen und hierarchische Selbstorganisation von metallosupramolekularen Nano-Sphären","Dissertation","free","open access","Text","Biologie, Chemie, Pharmazie","FUDISS_derivate_000000004626","FUDISS_thesis_000000006013"