In this thesis, the interactions between mono- and multivalent thiol and amine ligands and noble metal nanoparticles are investigated. The multivalent interactions are characterized by the simultaneous binding of multivalent ligands on one entity to multivalent receptors on another one. The binding affinities of multivalent ligands are stronger than that of monovalent ones. So far, multivalent interactions with nanoparticles are not fully explored. Therefore, different physico-chemical techniques are used to investigate the interactions between mono- and multivalent ligands with nanoparticles. The results gathered in this work are divided into four parts. In first part, the effect of the ligand’s multivalency and the nanoparticles size on the binding kinetics of thiol ligands on gold nanoparticles is evaluated by exchanging monovalently bound pyrene thiol ligands bound to gold nanoparticles against flexible mono- and multivalent thiol ligands. For this, gold nanoparticles with diameters of 2.2±0.4 nm, 3.2±0.7 nm, and 4.4±0.9 nm are used as substrates. The pyrene thiol is used as a fluorescent probe as well as a stabilizer of the gold nanoparticles before the ligand exchange reaction takes place. The effects of the ligand’s multivalency and the particles size are evaluated by comparing the rate constants of the ligand exchange reactions. To evaluate these effects, the experimental data have been fitted by using various models. The results from kinetics studies are well fitted by a bi- exponential function as well as by a second order Langmuir diffusion models. However, only a bi-exponential fit function can reasonably explain the processes occurring with the ligand exchange process. Systematic investigations reveal a significant enhancement of the reaction rates of di- and trivalent ligands compared to the monovalent ones. This is attributed to a distinct multivalency effect. In contrast, the exchange rates of the trivalent ligands are similar or even lower than those of the divalent ones. This is explained by steric hindrance of bulky trivalent ligands. In addition, it is also observed that the rate constants increase with the particle size. The results are used to derive structural information on the binding of the mono- and multivalent ligands to the nanoparticles surface. Furthermore, it turns out, that gold particles larger than 4 nm in diameter aggregate during the ligand exchange reaction, likely because the non-bulky incoming alkyl thiol ligands do not provide sufficient steric stabilization. In the second part of this work, the binding of rigid aromatic thiols on gold nanoparticles of 2.2±0.4 nm, 3.2±0.7 nm, and 4.4±0.9 nm is investigated. The pyrene thiol bound on gold nanoparticles is exchanged by 4-toluenethiol or 3,4-toluenedithiol. During the exchange reaction, the particles aggregate immediately after the addition of the aromatic rigid thiol ligands. This clearly shows that flexible alkyl thiol ligands provide sufficient steric stabilization for the gold nanoparticles than the rigid aromatic thiol ligands. In the third part, the binding of mono- and multivalent alkyl thiol ligands on silver nanoparticles with 4.6±2.0 nm diameter is studied, wherein the same alkyl thiol ligands which are also used in the experiments on gold nanoparticles are used. Silver particles stabilized by pyrene thiol ligands are synthesized and the thiol ligands are exchanged by the mono- and multivalent alkyl thiol ligands. During the exchange process partial precipitation of the particles occurs as a consequence of severe aggregation. The results on the silver nanoparticles are compared to those obtained from gold nanoparticles of a similar size (4.4±0.9 nm) during the exchange of pyrene thiol against mono- and multivalent alkyl thiol ligands. The exchange rates of pyrene thiol with di- and trivalent ligands are similar for silver and gold nanoparticles. In case of the monovalent ligands, initially, the exchange rate on silver nanoparticles seems to be faster than on gold nanoparticles. In last part of this work, the influence of the presence of mono-, di-, and trivalent alkyl amine ligands on the nucleation and growth of platinum and silver nanoparticles is investigated. Here, for the first time mono- and multivalent amine ligands are used to control the formation of platinum and silver nanoparticles using platinum (II) acetylacetonate and silver (II) acetylacetonate as precursors, respectively. Platinum and silver nanoparticles are prepared by one-step processes at 200 °C and 120 °C, respectively, in order to investigate the influence of the amine ligands on the formation of nanoparticles. Additionally, procedures are applied, where the reaction temperature is stepwise increased between 160 and 200 °C in the case of platinum and between 80 and 120 °C for silver. The multivalency effects of the ligands on the formation of platinum particles are investigated by using TEM measurements. The platinum particles prepared at 200 °C in the presence of monovalent ligands are rather polydisperse and have a non-spherical shape, whereas the di- and trivalent ligands cause the growth of monodisperse and spherical particles. In contrast, platinum particles prepared by stepwise increasing the temperature have a spherical shape independent on the ligand multivalency and the reaction temperature. The influence of the ligand’s multivalency on the formation, growth, and stability of silver particles is investigated by TEM and UV-Vis measurements. The size distributions of the silver particles prepared by a one-step process are wider than those of the particles prepared by a stepwise process. This is because faster nucleation and growth processes take place and as a consequence, nucleation and growth are not well separated if the particles are prepared by a one-step process at high temperature instead of a stepwise process at lower temperatures.
In dieser Arbeit werden die Wechselwirkungen zwischen mono- und multivalenten Thiol- und Amin-Liganden und Edelmetall-Nanopartikeln untersucht. Charakteristisch für die multivalenten Wechselwirkungen ist die zeitgleiche Bindung multivalenter Liganden einer Spezies an multivalente Rezeptoren einer anderen Spezies. Dabei ist die Bindungsenergie der multivalenten Bindung größer, als die Summe der einzelnen, monovalenten Bindungen. Die Untersuchung des Multivalenzeffektes erfolgt mittels verschiedener physikalisch-chemischer Techniken mit dem Ziel, das grundlegende Verständnis der Wechselwirkungen zwischen multivalenten Liganden und Nanopartikeln zu verbessern. Die Ergebnisse dieser Arbeiten sind in vier Teilen zusammengefasst. Im ersten Teil werden der Einfluss der Multivalenz der Liganden sowie der Größe der Nanopartikel auf die Bindungskinetik von Thiol-Liganden auf Goldnanopartikel anhand des Austausches von monovalent gebundenen Pyren-Thiol-Liganden gegen flexible mono- und multivalente Alkyl-Thiol-Liganden untersucht. Dazu werden Gold-Nanopartikel mit einem Druchmesser von 2.2±0.4 nm, 3.2±0.7 nm und 4.4±0.9 nm als Substrat verwendet. Die Pyren-Thiol-Liganden dienen als fluoreszierende Sonden und zur Stabilisierung der Goldnanopartikel vor dem Ligandenaustausch. Die Auswirkungen der Multivalenz der Liganden und der Partikelgröße werden durch den Vergleich der Geschwindigkeitskonstanten der Liganden-Austausch- Reaktionen ermittelt. Um diese besser beurteilen zu können, wurden die erhaltenen Ergebnisse mit verschiedenen Modellen angepasst. Es stellte sich heraus, dass sich die Daten aus den Kinetik-Versuchen mit einer biexponentiellen Funktion und einem Langmuir-Diffusions-Modell zweiter Ordnung grundsätzlich annähnern lassen. Zur Anwendung kam jedoch ausschließlich das biexponentielle Modell, da dieses die ablaufenden Prozesse korrekt beschreibt. Systematische Untersuchungen zeigen eine deutliche Erhöhung der Reaktionsgeschwindigkeit di- und trivalenter Liganden im Vergleich zu den monovalenten Liganden. Dies ist auf einen deutlichen Multivalenzeffekt zurückzuführen. Im Gegensatz dazu ist die Austauschgeschwindigkeit der trivalenten Liganden ähnlich oder gar niedriger als die der divalenten Liganden. Dies wird durch die sterische Hinderung der sterisch anspruchsvollen trivalenten Liganden erklärt. Darüber hinaus wird beobachtet, dass die Geschwindigkeitskonstanten mit zunehmender Teilchengröße steigen. Die erhaltenen Resultate werden dazu genutzt, Informationen über die Struktur der Bindung der mono- und multivalenten Liganden an die Nanopartikel-Oberfläche abzuleiten. Darüber hinaus hat sich gezeigt, dass Gold-Partikel mit einem Durchmesser von mehr als 4 nm während des Ligandenaustausches aggregieren. Dies ist wahrscheinlich auf die unzureichende sterische Stabilisierung durch die Alkyl-Thiol-Liganden zurückzuführen. Im zweiten Teil wird die Bindung von starren, aromatischen Thiolen an Goldnanopartikel mit einem Durchmesser von 2.2±0.4 nm, 3.2±0.7 nm und 4.4±0.9 nm untersucht. Die an die Partikel gebundenen Pyren-Thiol-Liganden werden gegen 4-Toluolthiol und 3,4-Toluoldithiol substituiert. Während des Ligandenaustausches aggregieren die Teilchen unmittelbar nach der Zugabe der aromatischen Thiole. Dies ist möglicherweis auf eine unzulängliche sterische Stabilisierung der Goldpartikel durch die starren, aromatischen Thiol-Liganden zurückzuführen. Es wird deutlich, dass die flexiblen Alkyl-Thiol-Liganden im Vergleich zu den starren, aromatischen Thiolen eine stärkere Stabilisierung der Goldnanopartikel gewährleisten. Im dritten Abschnitt wird die Bindung von mono- und multivalenten Alkyl-Thiol-Liganden an Silber-Nanopartikel mit 4.6±2.0 nm Durchmesser untersucht, wobei die gleichen Liganden, die auch in den Versuchen mit den Gold-Nanopartikeln genutzt wurden, zum Einsatz kommen. Durch Pyren- Thiol-Liganden stabilisierte Silberpartikel werden synthetisiert und anschließend die Pyren-Liganden gegen mono- und multivalente Alkyl-Thiol- Liganden substituiert. Im Zuge dieses Austauschprozesses fallen die Partikel teilweise aus, was eine Folge ausgeprägter Aggregationsprozesse ist. Die erhaltenen Ergebnisse zu Silber-Nanopartikeln werden mit den Ergebnissen zum Ligandenaustausch von Pyren-Thiol-Liganden gegen mono- und multivalente Alkyl- Thiol-Liganden an Gold-Nanopartikel gleicher Größe verglichen. Die Austauschgeschwindigkeit von Pyren-Thiolen gegen di- und trivalente Liganden liegen im Fall von Gold- wie Silber-Nanopartikeln in derselben Größenordnung. Im Fall der monovalenten Liganden scheint die Austauschgeschwindigkeit der Liganden, die an Silberpartikel gebunden sind, höher zu sein als für Goldnanopartikel. Im letzten Teil dieser Arbeit wird der Einfluss von mono-, di- und trivalenten Alkyl-Amin-Liganden auf die Nukleation und das Wachstum von Platin- und Silber-Nanopartikel untersucht. Zum ersten Mal wurden mono- und multivalente Amin-Liganden verwendet, um die Bildung der Platin- und Silber-Nanopartikel aus den Vorstufen Platin(II)acetylacetonat bzw. Silber(II)acetylacetonat zu steuern. Um den Einfluss der Amin-Liganden auf die Partikelbildung zu untersuchen, werden Platin- und Silber-Nanopartikel zum einen durch ein einstufiges Verfahren bei 200 °C für Platin beziehungsweise 120 °C für Silber dargestellt. Zum anderen erfolgt die Synthese der Partikel durch ein Verfahren, bei dem die Reaktionstemperatur schrittweise zwischen 160 und 200 °C im Fall von Platin bzw. 80 und 120 °C im Fall von Silber erhöht wird. Die Auswirkungen des Multivalenz-Effektes der Liganden auf die Bildung von Platinpartikel wird vor allem durch TEM-Experimente untersucht. Die bei 200 °C in Gegenwart monovalenter Liganden dargestellten Platin-Nanopartikel weisen eine nicht-sphärische Form auf, wohingegen die mittels di- und trivalenten Liganden synthetisierten Partikel sphärisch sind. Im Gegensatz dazu führt die Synthesemethode mit einem schrittweisen Anstieg der Temperatur zu sphärischen Partikeln, unabhängig von der Wahl des Liganden. Der Einfluss der Valenz der Liganden auf die Bildung, das Wachstum und die Stabilität der Silber-Partikel wird mittels dem TEM- und UV-Vis-Messungen untersucht. Die Größenverteilung der Silberpartikel aus dem einstufigen Syntheseprozess ist breiter als die der Teilchen, die durch ein stufenweises Verfahren hergestellt worden sind. Der Grund hierfür liegt in den schnelleren Nukleations- und Wachstumsprozessen im Fall des einstufigen Prozesses bei hohen Temperaturen, die keine deutliche Trennung von Nukleation und Wachstum zulassen.