dc.contributor.author
Doering, Niklas Piet
dc.contributor.author
Talagayev, Valerij
dc.contributor.author
Liu, Sijie
dc.contributor.author
Wolber, Gerhard
dc.date.accessioned
2026-01-07T08:17:16Z
dc.date.available
2026-01-07T08:17:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50793
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50520
dc.description.abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two important targets in current drug discovery, mainly due to the COVID-19 pandemic and the MERS-CoV outbreaks in recent years. An important target of both SARS-CoV-2 and MERS-CoV is the main protease (Mpro). Recently, the ASAP Discovery Consortium focused on the acceleration of Mpro inhibitors with a part of this initiative being an open blind challenge in collaboration with Valence lab using the Polaris platform, where data sets of previously undisclosed inhibitors of SARS-CoV-2 Mpro and MERS-CoV Mpro were shared with researchers, to allow the development of machine learning and deep learning models for the prediction of the potency. We used this opportunity to evaluate and compare traditional machine learning models consisting of a random forest (RF) and gradient boosting model (XGBoost) with a bayesian neural network (BNN) model. For this purpose, we created single task models for the predictions of each of the targets. The results obtained showed that the BNN model outperformed both traditional machine learning models for both targets, indicating that BNNs are a promising deep learning framework in low-data regimes.
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Drug discovery
en
dc.subject
Machine learning
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Fingerprint-Based Machine Learning for SARS-CoV-2 and MERS-CoV Mpro Inhibition: Highlighting the Potential of Bayesian Neural Networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.jcim.5c02014
dcterms.bibliographicCitation.journaltitle
Journal of Chemical Information and Modeling
dcterms.bibliographicCitation.number
24
dcterms.bibliographicCitation.pagestart
13255
dcterms.bibliographicCitation.pageend
13265
dcterms.bibliographicCitation.volume
65
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.jcim.5c02014
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie

refubium.funding
ACS Publications
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1549-960X