Estimated groundwater recharge is considered the essential factor for groundwater management and sustainability, especially in arid lands such as the Kingdom of Saudi Arabia (KSA). Consequently, assessing groundwater recharge is a key process for forecasting groundwater accessibility to sustain safe withdrawal. So, this study focused on environmental isotopes, the chloride mass balance (CMB) method, and a SWAT model by integrating GIS with hydrological and hydrochemical techniques to detect the origin of coastal aquifer groundwater and to compute the recharging rate in the study area. This study is based on the results of chemical analysis of 78 groundwater samples and environmentally stable isotopes, including deuterium (<sup>2</sup>H) and oxygen-<sup>18</sup>O, in 29 representative samples. The results revealed that the origin of groundwater recharge comes through precipitation, where the ranges of δ<sup>18</sup>O and δ<sup>2</sup>H isotopes in the analyzed groundwater were from −1.10‰ to +1.03‰ and from −0.63‰ to 11.63‰, respectively. The CMB finding for estimating the average recharge is 3.57% of rainfall, which agrees with a previous study conducted in the wadi Qanunah basin (north of the study area), where the estimated average value of recharge was 4.25% of rainfall. Meanwhile, the estimated annual recharge using a SWAT model ranged between 1 mm and 16.5 mm/year at an average value of approximately 8.75 mm/year. The results obtained by the two techniques are different due to some reasons such as the presence of additional chloride sources, as well as evaporation. Outputs of this study will be valuable for the local community, officials, and decision-makers who are concerned with groundwater resources.