dc.contributor.author
Kovalchuk, Sviatoslav
dc.contributor.author
Greben, Kyrylo
dc.contributor.author
Kumar, Abhijeet M.
dc.contributor.author
Pessel, Simon
dc.contributor.author
Soyka, Jan
dc.contributor.author
Cao, Qing
dc.contributor.author
Watanabe, Kenji
dc.contributor.author
Taniguchi, Takashi
dc.contributor.author
Christiansen, Dominik
dc.contributor.author
Selig, Malte
dc.contributor.author
Knorr, Andreas
dc.contributor.author
Eigler, Siegfried
dc.contributor.author
Bolotin, Kirill I.
dc.date.accessioned
2025-12-02T09:49:51Z
dc.date.available
2025-12-02T09:49:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50562
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50289
dc.description.abstract
Heterostructures of molecules and two-dimensional materials feature emergent properties not seen in their individual components. Here, we study excitons in bilayer transition metal dichalcogenides exposed to an intense electric field produced by charge transfer from proximal molecules. Our approach allows for reaching an electric field strength of 0.35 V nm−1, up to a factor of two higher than previously achieved in purely solid-state gated devices. Under this field, inter- and intralayer excitons are brought into an energetic resonance, allowing us to explore a new physical regime. We detect a previously unseen interlayer exciton that only becomes visible at high electric field through hybridization with the intralayer A exciton. Moreover, the system experiences an ultra-strong Stark splitting of > 350 meV with exciton energies tunable over a large range of the optical spectrum, holding potential for optoelectronics. Our work paves the way for using strong electric fields to study new physical phenomena and control exciton hybridization in 2D semiconductors.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Electronic devices
en
dc.subject
Electronic properties and materials
en
dc.subject
Organic–inorganic nanostructures
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Revealing hidden interlayer excitons in 2D bilayers via hybrid molecular gating
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9893
dcterms.bibliographicCitation.doi
10.1038/s41467-025-65431-6
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-65431-6
refubium.affiliation
Physik
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723