dc.contributor.author
Yagodkin, Denis
dc.contributor.author
Burfeindt, Kenneth
dc.contributor.author
Iakovlev, Zakhar A.
dc.contributor.author
Kumar, Abhijeet M.
dc.contributor.author
Dewambrechies, Adrián
dc.contributor.author
Yücel, Oğuzhan
dc.contributor.author
Höfer, Bianca
dc.contributor.author
Gahl, Cornelius
dc.contributor.author
Glazov, Mikhail M.
dc.contributor.author
Bolotin, Kirill I.
dc.date.accessioned
2025-12-02T07:54:53Z
dc.date.available
2025-12-02T07:54:53Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50555
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50282
dc.description.abstract
Excitons in Transition Metal Dichalcogenides (TMDs) acquire a spin-like quantum number, a pseudospin, originating from the crystal’s discrete rotational symmetry. Here, we break this symmetry using a tunable uniaxial strain, effectively generating a pseudomagnetic field acting on exciton valley degree of freedom. Under this field, we demonstrate pseudospin analogs of spintronic phenomena such as the Zeeman effect and Larmor precession and determine fundamental timescales for pseudospin dynamics in TMDs. Finally, we uncover the bosonic – as opposed to fermionic – nature of many-body excitonic species using the pseudomagnetic equivalent of the g -factor spectroscopy. Our work is the first step toward establishing this spectroscopy as a universal method for probing correlated many-body states and realizing pseudospin analogs of spintronic devices.
en
dc.format.extent
8 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Optomechanics
en
dc.subject
Single photons and quantum effects
en
dc.subject
Structure of solids and liquids
en
dc.subject
Theoretical physics
en
dc.subject
Two-dimensional materials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Fermi polarons under strain-induced pseudomagnetic fields
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-12-01T16:13:10Z
dcterms.bibliographicCitation.articlenumber
10232
dcterms.bibliographicCitation.doi
10.1038/s41467-025-66192-y
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-025-66192-y
refubium.affiliation
Physik
refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen