dc.contributor.author
Chemissany, Wissam
dc.contributor.author
Gesteau, Elliott
dc.contributor.author
Jahn, Alexander
dc.contributor.author
Murphy, Daniel
dc.contributor.author
Shaposhnik, Leo
dc.date.accessioned
2025-11-07T09:26:15Z
dc.date.available
2025-11-07T09:26:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50214
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49940
dc.description.abstract
We initiate a study of local operator algebras at the boundary of infinite tensor networks, using the mathematical theory of inductive limits. In particular, we consider tensor networks in which each layer acts as a quantum code with complementary recovery, a property that features prominently in the bulk-to-boundary maps intrinsic to holographic quantum error-correcting codes. In this case, we decompose the limiting Hilbert space and the algebras of observables in a way that keeps track of the entanglement in the network. As a specific example, we describe this inductive limit for the holographic Harlow-Pastawski-Preskill-Yoshida code model and relate its algebraic and error-correction features. We find that the local algebras in this model are given by the hyperfinite type II infinity factor. Next, we discuss other networks that build upon this framework and comment on a connection between type II factors and stabilizer circuits. We conclude with a discussion of multiscale entanglement renormalization ansatz networks in which complementary recovery is broken. We argue that this breaking possibly permits a limiting type III von Neumann algebra, making them more suitable ans & auml;tze for approximating subregions of quantum field theories.
en
dc.format.extent
54 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
tensor networks
en
dc.subject
holographic quantum error correction
en
dc.subject
renormalization group
en
dc.subject
holographic dualities
en
dc.subject
operator algebras
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
On infinite tensor networks, complementary recovery and type II factors
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
435301
dcterms.bibliographicCitation.doi
10.1088/1751-8121/ae0edd
dcterms.bibliographicCitation.journaltitle
Journal of Physics A: Mathematical and Theoretical
dcterms.bibliographicCitation.number
43
dcterms.bibliographicCitation.volume
48
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1751-8121/ae0edd
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1751-8121
refubium.resourceType.provider
WoS-Alert