dc.contributor.author
Bruijning, Marjolein
dc.contributor.author
Meester, Luc de
dc.contributor.author
Visser, Marco D.
dc.contributor.author
Fossen, Erlend I. F.
dc.contributor.author
Vanvelk, Héléne
dc.contributor.author
Raeymaekers, Joost A. M.
dc.contributor.author
Govaert, Lynn
dc.contributor.author
Brans, Kristien I.
dc.contributor.author
Einum, Sigurd
dc.contributor.author
Jongejans, Eelke
dc.date.accessioned
2025-10-27T08:52:45Z
dc.date.available
2025-10-27T08:52:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/50021
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49746
dc.description.abstract
The persistence of local populations exposed to climate change depends on their adaptive potential and on the ability of local individuals to compete with migrating conspecifics tracking environmental shifts. Modern coexistence theory (MCT) offers a framework for studying such competitive interactions among genotypes. However, MCT often focuses on emerging population-level outcomes, aggregating over the underlying individual-level interactions. We present a cross-scale application of MCT, combining it with an Integral Projection Model (IPM), explicitly connecting individual performance to population-level dynamics. We parameterise our model using experimental data on competing Daphnia genotypes from two latitudes. Consistent with observations, our model shows that higher temperatures increase the likelihood of competitive exclusion of Northern genotypes by Southern genotypes. Moreover, it reveals latitudinal variation in neonate sex ratios as a driver of temperature-dependent evolutionary shifts. By identifying vital rates underlying population-level competitive outcomes, our approach preserves the straightforward theoretical interpretability of MCT, while providing enhanced process-level resolution through IPMs.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
density-dependence
en
dc.subject
integral projection modelling
en
dc.subject
intraspecific competition
en
dc.subject
modern coexistence theory
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Linking Individual Performance to Density-Dependent Population Dynamics to Understand Temperature-Mediated Genotype Coexistence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e70214
dcterms.bibliographicCitation.doi
10.1111/ele.70214
dcterms.bibliographicCitation.journaltitle
Ecology Letters
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.volume
28
dcterms.bibliographicCitation.url
https://doi.org/10.1111/ele.70214
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1461-0248
refubium.resourceType.provider
WoS-Alert