dc.contributor.author
Kumar, Abhijeet M.
dc.contributor.author
Bock, Douglas J.
dc.contributor.author
Yagodkin, Denis
dc.contributor.author
Wietek, Edith
dc.contributor.author
Höfer, Bianca
dc.contributor.author
Sinner, Max
dc.contributor.author
Dewambrechies, Adrián
dc.contributor.author
Hernández López, Pablo
dc.contributor.author
Kovalchuk, Sviatoslav
dc.contributor.author
Dhingra, Raghav
dc.contributor.author
Heeg, Sebastian
dc.contributor.author
Gahl, Cornelius
dc.contributor.author
Libisch, Florian
dc.contributor.author
Chernikov, Alexey
dc.contributor.author
Malic, Ermin
dc.contributor.author
Rosati, Roberto
dc.contributor.author
Bolotin, Kirill I.
dc.date.accessioned
2025-10-24T04:50:36Z
dc.date.available
2025-10-24T04:50:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49853
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49578
dc.description.abstract
Encoding and manipulating digital information in quantum degrees of freedom is one of the major challenges of today’s science and technology. The valley indices of excitons in transition metal dichalcogenides (TMDs) are well-suited to addressing this challenge. Here, we employ mechanical strain to manipulate intervalley interactions and tune the valley polarization dynamics of excitons across a broader range of momentum space in monolayer TMDs. We use strain engineering to form valley-hybridized excitons that combine the advantages of bright intravalley excitons, where the valley index directly couples to light polarization, and dark intervalley excitons, characterized by low depolarization rates. We demonstrate that these valley-hybridized excitons exhibit signatures of coherently coupled states with a 100-fold reduction in valley depolarization rate and up to a 5-fold increase in steady-state valley polarization compared to previously studied excitons. Our findings of strain-tunable valley character of excitons advance the applications of TMDs in valleytronics.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Valleytronics
en
dc.subject
Transition metal dichalcogenides (TMDs)
en
dc.subject
2D semiconductors
en
dc.subject
Spin/valley dynamics
en
dc.subject
Mechanical strain
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Strain Control of Valley Polarization Dynamics in a 2D Semiconductor via Exciton Hybridization
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.nanolett.5c02636
dcterms.bibliographicCitation.journaltitle
Nano Letters
dcterms.bibliographicCitation.number
42
dcterms.bibliographicCitation.pagestart
15164
dcterms.bibliographicCitation.pageend
15172
dcterms.bibliographicCitation.volume
25
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.nanolett.5c02636
refubium.affiliation
Physik
refubium.funding
ACS Publications
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1530-6992