dc.contributor.author
Puig, Ricard
dc.contributor.author
Sekatski, Pavel
dc.contributor.author
Erdman, Paolo Andrea
dc.contributor.author
Abiuso, Paolo
dc.contributor.author
Calsamiglia, John
dc.contributor.author
Perarnau-Llobet, Martí
dc.date.accessioned
2025-09-25T10:58:08Z
dc.date.available
2025-09-25T10:58:08Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49571
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49293
dc.description.abstract
We consider the estimation of an unknown parameter 𝜃
via a many-body probe. The probe is initially prepared in a product state and many-body time-independent interactions enhance its 𝜃
sensitivity during the dynamics and/or in the steady state. We present bounds on the quantum Fisher information, and corresponding optimal interacting Hamiltonians, for two paradigmatic scenarios for encoding 𝜃
: (i) via unitary Hamiltonian dynamics (dynamical metrology), and (ii) in the Gibbs and diagonal ensembles (time-averaged dephased state), two ubiquitous steady states of many-body open dynamics. We then move to the specific problem of estimating the strength of a magnetic field via interacting spins and derive two-body interacting Hamiltonians that can approach the fundamental precision bounds. In this case, we additionally analyze the transient regime leading to the steady states and characterize trade-offs between equilibration times and measurement precision. Overall, our results provide a comprehensive picture of the potential of many-body control in quantum sensing.
en
dc.format.extent
35 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Magnetometry
en
dc.subject
Quantum Fisher information
en
dc.subject
Quantum metrology
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
From Dynamical to Steady-State Many-Body Metrology: Precision Limits and Their Attainability with Two-Body Interactions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
030309
dcterms.bibliographicCitation.doi
10.1103/PRXQuantum.6.030309
dcterms.bibliographicCitation.journaltitle
PRX Quantum
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
6
dcterms.bibliographicCitation.url
https://doi.org/10.1103/PRXQuantum.6.030309
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2691-3399
refubium.resourceType.provider
WoS-Alert