dc.contributor.author
Kremp, Helena
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2025-10-29T10:27:21Z
dc.date.available
2025-10-29T10:27:21Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49290
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-49012
dc.description.abstract
We introduce a weak solution concept (called “rough weak solutions") for singular SDEs with additive alpha-stable Lévy noise (including the Brownian noise case) and prove its well-posedness and equivalence to martingale solutions from Kremp and Perkowski (Bernoulli 28(3):1757–1783, 2022. https://doi.org/10.3150/21-BEJ1394) in “Young” and “rough” regularity regimes. In the rough regime this requires to construct certain rough integrals with the help of the stochastic sewing lemma, which we use to prove a generalized Itô formula for rough weak solutions. Furthermore, we show that in the Young case our solutions are equivalent to a simpler notion of weak solution, while in the rough case this simpler formulation leads to non-uniqueness in law.
en
dc.format.extent
55 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Fractional Laplace operator
en
dc.subject
Singular Lévy SDEs
en
dc.subject
Equivalence of weak solution concepts
en
dc.subject
Paracontrolled distributions
en
dc.subject
Rough stochastic integrals
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Rough weak solutions for singular Lévy SDEs
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s00440-025-01371-y
dcterms.bibliographicCitation.journaltitle
Probability Theory and Related Fields
dcterms.bibliographicCitation.number
1-2
dcterms.bibliographicCitation.pagestart
483
dcterms.bibliographicCitation.pageend
537
dcterms.bibliographicCitation.volume
193
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00440-025-01371-y
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-2064
refubium.resourceType.provider
WoS-Alert