Investigating Chirality-Induced Spin Selectivity (CISS) at the molecular level offers a novel perspective, in between Chemistry and Physics, on this still not fully understood phenomenon. Indeed, the molecular approach offers an advantage point for understanding CISS by disentangling the role of chiral molecules from that of the surfaces. Here, we present an overview of experimental observations of CISS in electron transfer on isolated molecules in solution and the current status of theory to model the phenomenon. We discuss what is accomplished and which are the most important questions, and we propose experiments based on electron and nuclear magnetic resonance both to unravel open issues on the CISS effect in electron transfer and to apply it to quantum technologies.