dc.contributor.author
Huang, Xingyun
dc.contributor.author
Li, Wensui
dc.contributor.author
Qin, Guoming
dc.contributor.author
Guan, Fangyuan
dc.contributor.author
Cui, Yongxing
dc.contributor.author
Shi, Jingwei
dc.contributor.author
Lu, Zhe
dc.contributor.author
Zhang, Lulu
dc.contributor.author
Zhang, Jingfan
dc.contributor.author
Zhang, Jingfan
dc.contributor.author
Zhou, Jinge
dc.contributor.author
Ding, Ruyi
dc.contributor.author
He, Hua
dc.contributor.author
Asenso, Evans
dc.contributor.author
Li, Hui
dc.contributor.author
Wang, Faming
dc.date.accessioned
2025-09-05T05:23:00Z
dc.date.available
2025-09-05T05:23:00Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/49086
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48809
dc.description.abstract
1. Mangrove forests are among the most productive blue carbon (C) ecosystems. While mangrove restoration is recognized for its potential to increase coastal blue C storage, its effects on soil organic C (SOC) stability and sources remain poorly understood.
2. Here, we examined the effects of mangrove restoration on SOC fractions and explored the relative contributions of plant versus microorganisms to these fractions. Specifically, we assessed the contents of particulate organic carbon (POC), coarse mineral-associated organic carbon (cMAOC), fine mineral-associated organic carbon (fMAOC) and two biomarkers (lignin phenol and amino sugar) across different restored vegetation zones in a typical mature mangrove wetland.
3. Our results showed that mangrove restoration significantly increased the contents of all SOC fractions: POC (increasing by 39.90%–178.15%), cMAOC (27.98%–134.03%) and fMAOC (96.39%–731.56%). Notably, restoration primarily increased SOC through the accumulation of fMAOC (explaining 59.07% of SOC variation). We also found that Fe-bound C (17.10%) predominated over Ca-bound C (6.84%) in fMAOC accumulation, likely due to redox changes following restoration. More than 65% of MAOC originates from plant residues, with a smaller proportion derived from microbial necromass. These findings emphasize the predominant role of minerals in stabilizing plant-derived organic C over microbial-derived organic C in mangroves.
4. Overall, this study highlights the potential of mangrove restoration not only to increase SOC sequestration but also to enhance its stability through mineral-organic interactions, positioning mangrove restoration as a valuable nature-based solution for climate change mitigation.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
calcium-bound carbon
en
dc.subject
iron-bound carbon
en
dc.subject
mangrove restoration
en
dc.subject
mineral-associated organic carbon
en
dc.subject
organic carbon stability
en
dc.subject
particulate organic carbon
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Mangrove restoration enhances blue carbon sequestration and its stability in a subtropical tidal wetland
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1111/1365-2435.70121
dcterms.bibliographicCitation.journaltitle
Functional Ecology
dcterms.bibliographicCitation.number
9
dcterms.bibliographicCitation.pagestart
2437
dcterms.bibliographicCitation.pageend
2451
dcterms.bibliographicCitation.volume
39
dcterms.bibliographicCitation.url
https://doi.org/10.1111/1365-2435.70121
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1365-2435
refubium.resourceType.provider
WoS-Alert