dc.contributor.author
Tang, Yifan
dc.contributor.author
Andolina, Gian Marcello
dc.contributor.author
Cuzzocrea, Alice
dc.contributor.author
Mezera, Matěj
dc.contributor.author
Szabó, P. Bernat
dc.contributor.author
Schätzle, Zeno
dc.contributor.author
Noé, Frank
dc.contributor.author
Erdman, Paolo A.
dc.date.accessioned
2025-08-29T11:25:07Z
dc.date.available
2025-08-29T11:25:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48983
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48706
dc.description.abstract
Recent years have witnessed a surge of experimental and theoretical interest in controlling the properties of matter, such as its chemical reactivity, by confining it in optical cavities, where the enhancement of the light–matter coupling strength leads to the creation of hybrid light–matter states known as polaritons. However, ab initio calculations that account for the quantum nature of both the electromagnetic field and matter are challenging and have only started to be developed in recent years. We introduce a deep learning variational quantum Monte Carlo method to solve the electronic and photonic Schrödinger equations of molecules trapped in optical cavities. We extend typical electronic neural network wave function ansätze to describe joint fermionic and bosonic systems, i.e., electron–photon systems, in a quantum Monte Carlo framework. We apply our method to hydrogen molecules in a cavity, computing both ground and excited states. We assess their energy, dipole moment, charge density shift due to the cavity, the state of the photonic field, and the entanglement developed between the electrons and photons. Where possible, we compare our results with more conventional quantum chemistry methods proposed in the literature, finding good qualitative agreement, thus extending the range of scientific problems that can be tackled using machine learning techniques.
en
dc.format.extent
18 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum chemistry
en
dc.subject
Ab-initio methods
en
dc.subject
Monte Carlo methods
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Deep quantum Monte Carlo approach for polaritonic chemistry
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
034108
dcterms.bibliographicCitation.doi
10.1063/5.0272805
dcterms.bibliographicCitation.journaltitle
The Journal of Chemical Physics
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.volume
163
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0272805
refubium.affiliation
Mathematik und Informatik
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Mathematik

refubium.affiliation.other
Institut für Theoretische Physik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1089-7690
refubium.resourceType.provider
WoS-Alert