dc.contributor.author
Begehr, Heinrich
dc.contributor.author
Wang, D.
dc.date.accessioned
2025-10-31T07:25:40Z
dc.date.available
2025-10-31T07:25:40Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/48772
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-48495
dc.description.abstract
Tessellations of the Euclidean plane and a circle, a model of the hyperbolic plane, impress by their beauty, elegance and balance equally mathematical amateurs as mathematicians. Besides its impressive figures, esthetic and elegance of related basic formulas affect scientists. The parqueting-reflection method provides besides the tiling related fundamental solutions to complex partial differential equations in the domains of the tessellation.
en
dc.format.extent
47 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Planar tessellation
en
dc.subject
parqueting-reflection principle
en
dc.subject
circular polygons
en
dc.subject
kernel functions for complex partial differential equations
en
dc.subject
in Euclidian space and in Clifford analysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Beauty in/of mathematics: tessellations and their formulas
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1080/00036811.2025.2510472
dcterms.bibliographicCitation.journaltitle
Applicable Analysis
dcterms.bibliographicCitation.number
14
dcterms.bibliographicCitation.pagestart
2826
dcterms.bibliographicCitation.pageend
2872
dcterms.bibliographicCitation.volume
104
dcterms.bibliographicCitation.url
https://doi.org/10.1080/00036811.2025.2510472
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1563-504X
refubium.resourceType.provider
WoS-Alert