The stabilization of soil organic carbon (SOC) is influenced by soil microbes and environmental factors, particularly temperature, which significantly affects SOC decomposition. This study investigates the effects of temperature (ambient: 25 °C; elevated: 27.5 °C) and soil microbial diversity (low, medium, and high) on the formation of stabilized SOC, focusing on mineral-associated organic carbon (MAOC) and water-stable aggregates, through a 75-day model soil incubation experiment. We measured water-stable aggregates, microbial respiration, and SOC in different fractions. Our results demonstrate that microbial diversity is crucial for SOC mineralization; low diversity resulted in 3.93–6.26% lower total carbon and 8.05–17.32% lower particulate organic carbon (POC) compared to medium and high diversity under the same temperature. While total MAOC was unaffected by temperature and microbial diversity, macroaggregate-occluded MAOC decreased by 8.78%, 38.36% and 9.40% under elevated temperature for low, medium and high diversity, respectively, likely driven by decreased macroaggregate formation. A negative correlation between macroaggregate-occluded POC and microbial respiration (r= -0.37, p < 0.05) suggested microbial decomposition of POC within macroaggregates contributed to respiration, with a portion of the decomposed POC potentially stabilized as microbial-derived MAOC. Notably, soils with medium microbial diversity exhibited the highest levels of both macroaggregate-occluded POC and MAOC at ambient temperature; however, elevated temperature disrupted this stabilization, reducing both POC retention and MAOC accumulation within macroaggregates. These findings underscore the temperature-sensitive interplay between microbial diversity and SOC stabilization, highlighting the need to disentangle microbial pathways governing C dynamics under climate change.