dc.contributor.author
Lindner, Niels
dc.contributor.author
Masing, Berenike
dc.date.accessioned
2026-01-12T11:57:22Z
dc.date.available
2026-01-12T11:57:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47497
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47215
dc.description.abstract
The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixed-integer programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless P = NP, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances.
en
dc.format.extent
43 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Periodic event scheduling problem
en
dc.subject
Periodic timetabling
en
dc.subject
Split closure
en
dc.subject
Mixed-integer programming
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
On the split closure of the periodic timetabling polytope
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s10107-025-02220-5
dcterms.bibliographicCitation.journaltitle
Mathematical Programming
dcterms.bibliographicCitation.number
1-2
dcterms.bibliographicCitation.pagestart
325
dcterms.bibliographicCitation.pageend
367
dcterms.bibliographicCitation.volume
215
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10107-025-02220-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.funding
Springer Nature DEAL
refubium.note.author
Gefördert aus Open-Access-Mitteln der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1436-4646