dc.contributor.author
Pan, Yiming
dc.contributor.author
Hildebrandt, Patrick-Nigel
dc.contributor.author
Zahn, Daniela
dc.contributor.author
Zacharias, Marios
dc.contributor.author
Windsor, Yoav William
dc.contributor.author
Ernstorfer, Ralph
dc.contributor.author
Caruso, Fabio
dc.contributor.author
Seiler, Hélène
dc.date.accessioned
2025-04-16T08:21:55Z
dc.date.available
2025-04-16T08:21:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47391
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-47109
dc.description.abstract
Electron–phonon coupling is central to many condensed matter phenomena. Harnessing these effects for functionality in materials always involves nonequilibrium electronic states, which in turn alter quasi-free-carrier density and screening. Thus, gaining a fundamental understanding of the interplay of carrier screening and electron–phonon coupling is essential for advancing ultrafast science. Prior work has mainly focused on the impact of carrier screening on electronic structure properties. Here, we investigate the nonequilibrium lattice dynamics of MoS2 after a photoinduced Mott transition. The experimental data are closely reproduced by ab initio ultrafast dynamics simulations. We find that the nonthermal diffuse scattering signals in the vicinity of the Bragg peaks, originating from long-wavelength phonon emission, can only be reproduced upon explicitly accounting for the screening of electron–phonon interaction introduced by the Mott transition. These results indicate that carrier screening influences electron–phonon coupling, leading to a suppression of intravalley phonon-assisted carrier relaxation. Overall, the combined experimental and computational approaches introduced here offer prospects for exploring the influence of screening of the electron–phonon interactions and relaxation pathways in driven solids.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
carrier screening
en
dc.subject
electron−phonon coupling
en
dc.subject
ultrafast electron diffraction
en
dc.subject
first-principles calculations
en
dc.subject
layered materials
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Momentum-Resolved Signatures of Carrier Screening Effects on Electron–Phonon Coupling in MoS2
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsnano.5c00744
dcterms.bibliographicCitation.journaltitle
ACS Nano
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.pagestart
11381
dcterms.bibliographicCitation.pageend
11389
dcterms.bibliographicCitation.volume
19
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsnano.5c00744
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1936-086X
refubium.resourceType.provider
WoS-Alert