Quantum complexity measures the difficulty of realizing a quantum process, such as preparing a state or implementing a unitary. We present an approach to quantifying the thermodynamic resources required to implement a process if the process’s complexity is restricted. We focus on the prototypical task of information erasure, or Landauer erasure, wherein an 𝑛-qubit memory is reset to the all-zero state. We show that the minimum thermodynamic work required to reset an arbitrary state in our model, via a complexity-constrained process, is quantified by the state’s complexity entropy. The complexity entropy therefore quantifies a trade-off between the work cost and complexity cost of resetting a state. If the qubits have a nontrivial (but product) Hamiltonian, the optimal work cost is determined by the complexity relative entropy. The complexity entropy quantifies the amount of randomness a system appears to have to a computationally limited observer. Similarly, the complexity relative entropy quantifies such an observer’s ability to distinguish two states. We prove elementary properties of the complexity (relative) entropy. In a random circuit—a simple model for quantum chaotic dynamics—the complexity entropy transitions from zero to its maximal value around the time corresponding to the observer’s computational-power limit. Also, we identify information-theoretic applications of the complexity entropy. The complexity entropy quantifies the resources required for data compression if the compression algorithm must use a restricted number of gates. We further introduce a complexity conditional entropy, which arises naturally in a complexity-constrained variant of information-theoretic decoupling. Assuming that this entropy obeys a conjectured chain rule, we show that the entropy bounds the number of qubits that one can decouple from a reference system, as judged by a computationally bounded referee. Overall, our framework extends the resource-theoretic approach to thermodynamics to integrate a notion of time, as quantified by complexity.