Dynamical decoupling multipulse sequences can be applied to solid-state spins for sensing weak oscillating fields from nearby single nuclear spins. By periodically reversing the probing system's evolution, other noises are counteracted and filtered out over the total evolution. However, the technique is subject to intricate interactions resulting in additional resonant responses, which can be misinterpreted with the actual signal intended to be measured. We experimentally characterize three of these effects present in single nitrogen-vacancy centers in diamond, where we also develop a numerical simulation model without rotating-wave approximation, showing robust correlation to the experimental data. Regarding centers with the 15N nitrogen isotope, we observe that a small misalignment in the bias magnetic field causes the precession of the nitrogen nuclear spin to be sensed by the electronic spin of the center. Another studied case of ambiguous resonances comes from the coupling with lattice 13C nuclei, where we use the echo modulation frequencies to obtain the interaction Hamiltonian and then utilize the latter to simulate multipulse sequences. Finally, we also measure and simulate the effects from the free evolution of the quantum system during finite pulse durations. Due to the large data volume and the strong dependence of these ambiguous resonances with specific experimental parameters, we provide a simulations data set with a user-friendly graphical interface, where users can compare simulations with their own experimental data for spectral disambiguation. Although focused on nitrogen-vacancy centers and dynamical decoupling sequences, these results and the developed model can potentially be applied to other solid-state spins and quantum sensing techniques.