dc.contributor.author
Kremp, Helena
dc.contributor.author
Perkowski, Nicolas
dc.date.accessioned
2025-04-09T12:04:36Z
dc.date.available
2025-04-09T12:04:36Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47253
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46971
dc.description.abstract
We consider backward fractional Kolmogorov equations with singular Besov drift of low regularity and singular terminal conditions. To treat drifts beyond the so-called Young regime, we assume an enhancement assumption on the drift and consider paracontrolled terminal conditions. Our work generalizes previous results on the equation from Cannizzaro and Chouk (Ann Probab 46:1710–1763, 2018), Kremp and Perkowski (Bernoulli 28:1757–1783, 2022. https://doi.org/10.3150/21-BEJ1394) to the case of singular paracontrolled terminal conditions and simultaneously treats singular and non-singular data in one concise solution theory. We introduce a paracontrolled solution space that implies parabolic time and space regularity on the solution without introducing the so-called modified paraproduct from Gubinelli and Perkowski (Commun Math Phys 349:165–269, 2017). The tools developed in this article apply for general linear PDEs that can be tackled with the paracontrolled ansatz.
en
dc.format.extent
44 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Kolmogorov equation
en
dc.subject
Fractional Laplace operator
en
dc.subject
Paracontrolled distributions
en
dc.subject
Singular terminal conditions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Fractional Kolmogorov Equations with Singular Paracontrolled Terminal Conditions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
39
dcterms.bibliographicCitation.doi
10.1007/s10959-025-01408-x
dcterms.bibliographicCitation.journaltitle
Journal of Theoretical Probability
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
38
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s10959-025-01408-x
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1572-9230
refubium.resourceType.provider
WoS-Alert