dc.contributor.author
Morelli, Flavio M.
dc.contributor.author
Kim, Vladislav
dc.contributor.author
Hecker, Franziska
dc.contributor.author
Geibel, Sven
dc.contributor.author
Marín Zapata, Paula A.
dc.date.accessioned
2025-04-09T09:24:14Z
dc.date.available
2025-04-09T09:24:14Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/47248
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46966
dc.description.abstract
High-content imaging (HCI) enables the characterization of cellular states through the extraction of quantitative features from fluorescence microscopy images. Despite the widespread availability of HCI data, the development of generalizable feature extraction models remains challenging due to the heterogeneity of microscopy images, as experiments often differ in channel count, cell type, and assay conditions. To address these challenges, we introduce uniDINO, a generalist feature extraction model capable of handling images with an arbitrary number of channels. We train uniDINO on a dataset of over 900,000 single-channel images from diverse experimental contexts and concatenate single-channel features to generate embeddings for multi-channel images. Our extensive validation across varied datasets demonstrates that uniDINO outperforms traditional computer vision methods and transfer learning from natural images, while also providing interpretability through channel attribution. uniDINO offers an out-of-the-box, computationally efficient solution for feature extraction in fluorescence microscopy, with the potential to significantly accelerate the analysis of HCI datasets.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
High-content imaging
en
dc.subject
Fluorescence microscopy
en
dc.subject
Morphological profiling
en
dc.subject
Self-supervised learning
en
dc.subject
Representation learning
en
dc.subject
Deep learning
en
dc.subject
Computer vision
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
uniDINO: Assay-independent feature extraction for fluorescence microscopy images
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.csbj.2025.02.020
dcterms.bibliographicCitation.journaltitle
Computational and Structural Biotechnology Journal
dcterms.bibliographicCitation.pagestart
928
dcterms.bibliographicCitation.pageend
936
dcterms.bibliographicCitation.volume
27
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.csbj.2025.02.020
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2001-0370
refubium.resourceType.provider
WoS-Alert