dc.contributor.author
Loche, Philip
dc.contributor.author
Kanduč, Matej
dc.contributor.author
Schneck, Emanuel
dc.contributor.author
Netz, Roland
dc.date.accessioned
2025-02-27T11:03:22Z
dc.date.available
2025-02-27T11:03:22Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46692
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46406
dc.description.abstract
Water at negative pressures can remain in a metastable state for a surprisingly long time before it reaches equilibrium by cavitation, i.e., by the formation of vapor bubbles. The wide spread of experimentally measured cavitation pressures depending on water purity, surface contact angle, and surface quality implicates the relevance of water cavitation in bulk, at surfaces, and at surface defects for different systems. We formulate a kinetic model that includes all three different cavitation pathways and determine the nucleation attempt frequencies in bulk, at surfaces, and at defects from atomistic molecular dynamics simulations. Our model reveals that cavitation occurs in pure bulk water only for defect-free hydrophilic surfaces with wetting contact angles below 50° to 60° and at pressures of the order of −100 MPa, depending only slightly on system size and observation time. Cavitation on defect-free surfaces occurs only for higher contact angles, with the typical cavitation pressure rising to about −30 MPa for very hydrophobic surfaces. Nanoscopic hydrophobic surface defects act as very efficient cavitation nuclei and can dominate the cavitation kinetics in a macroscopic system. In fact, a nanoscopic defect that hosts a preexisting vapor bubble can raise the critical cavitation pressure much further. Our results explain the wide variation of experimentally observed cavitation pressures in synthetic and biological systems and highlight the importance of surface and defect mechanisms for the nucleation of metastable systems.
en
dc.format.extent
9 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Free energy landscapes
en
dc.subject
Molecular dynamics
en
dc.subject
Computer simulation
en
dc.subject
Reaction kinetics modeling
en
dc.subject
Reaction mechanisms
en
dc.subject
Cavitation bubbles
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Water cavitation results from the kinetic competition of bulk, surface, and surface-defect nucleation events
dc.type
Wissenschaftlicher Artikel
dc.identifier.sepid
103919
dcterms.bibliographicCitation.articlenumber
024122
dcterms.bibliographicCitation.doi
10.1063/5.0247610
dcterms.bibliographicCitation.journaltitle
Physics of Fluids
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.originalpublishername
American Institute of Physics (AIP)
dcterms.bibliographicCitation.originalpublisherplace
Melville, NY
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1063/5.0247610
refubium.affiliation
Physik
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
de
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1070-6631
dcterms.isPartOf.eissn
1089-7666