dc.contributor.author
Escobar, Helena
dc.contributor.author
Di Francescantonio, Silvia
dc.contributor.author
Smirnova, Julia
dc.contributor.author
Graf, Robin
dc.contributor.author
Müthel, Stefanie
dc.contributor.author
Marg, Andreas
dc.contributor.author
Zhogov, Alexej
dc.contributor.author
Krishna, Supriya
dc.contributor.author
Metzler, Eric
dc.contributor.author
Petkova, Mina
dc.contributor.author
Daumke, Oliver
dc.contributor.author
Kühn, Ralf
dc.contributor.author
Spuler, Simone
dc.date.accessioned
2025-01-29T06:39:54Z
dc.date.available
2025-01-29T06:39:54Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46404
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46117
dc.description.abstract
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing, rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation, hEx44mut, recapitulates the patients’ phenotype and an identical re-framing outcome in primary muscle stem cells. Finally, gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility, not only in treating dysferlin deficiency syndromes, but also perhaps other forms of muscular dystrophy.
en
dc.format.extent
17 Seiten
dc.rights
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
CRISPR-Cas9 genome editing
en
dc.subject
Molecular medicine
en
dc.subject
Muscle stem cells
en
dc.subject
Neuromuscular disease
en
dc.subject
Targeted gene repair
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2025-01-27T13:29:05Z
dcterms.bibliographicCitation.articlenumber
120
dcterms.bibliographicCitation.doi
10.1038/s41467-024-55086-0
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
16
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-55086-0
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Chemie und Biochemie
![This authority value has been confirmed as accurate by an interactive user](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
DeepGreen