dc.contributor.author
Lozano-Gómez, Daniel
dc.contributor.author
Noculak, Vincent
dc.contributor.author
Oitmaa, Jaan
dc.contributor.author
Singh, Rajiv R. P.
dc.contributor.author
Iqbal, Yasir
dc.contributor.author
Reuther, Johannes
dc.contributor.author
Gingras, Michel J. P.
dc.date.accessioned
2025-01-16T14:09:55Z
dc.date.available
2025-01-16T14:09:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46289
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-46001
dc.description.abstract
Gauge theories are powerful theoretical physics tools that allow complex phenomena to be reduced to simple principles and are used in both high-energy and condensed matter physics. In the latter context, gauge theories are becoming increasingly popular for capturing the intricate spin correlations in spin liquids, exotic states of matter in which the dynamics of quantum spins never ceases, even at absolute zero temperature. We consider a spin system on a three-dimensional pyrochlore lattice where emergent gauge fields not only describe the spin liquid behavior at zero temperature but crucially determine the system’s temperature evolution, with distinct gauge fields giving rise to different spin liquid phases in separate temperature regimes. Focusing first on classical spins, in an intermediate temperature regime, the system shows an unusual coexistence of emergent vector and tensor gauge fields where the former is known from classical spin ice systems while the latter has been associated with fractonic quasiparticles, a peculiar type of excitation with restricted mobility. Upon cooling, the system transitions into a low-temperature phase where an entropic selection mechanism depopulates the degrees of freedom associated with the tensor gauge field, rendering the system spin-ice-like. We further provide numerical evidence that in the corresponding quantum model, a spin liquid with coexisting vector and tensor gauge fields has a finite window of stability in the parameter space of spin interactions down to zero temperature. Finally, we discuss the relevance of our findings for non-Kramers magnetic pyrochlore materials.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
spin liquids
en
dc.subject
entropic selection
en
dc.subject
liquid-to-liquid crossover
en
dc.subject
competing gauge fields
en
dc.subject
frustrated magnetism
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Competing gauge fields and entropically driven spin liquid to spin liquid transition in non-Kramers pyrochlores
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2403487121
dcterms.bibliographicCitation.doi
10.1073/pnas.2403487121
dcterms.bibliographicCitation.journaltitle
Proceedings of the National Academy of Sciences (PNAS)
dcterms.bibliographicCitation.number
36
dcterms.bibliographicCitation.volume
121
dcterms.bibliographicCitation.url
https://doi.org/10.1073/pnas.2403487121
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1091-6490
refubium.resourceType.provider
WoS-Alert