dc.contributor.author
Cojal González, José D.
dc.contributor.author
Rondomanski, Jakub
dc.contributor.author
Polthier, Konrad
dc.contributor.author
Rabe, Jürgen P.
dc.contributor.author
Palma, Carlos-Andres
dc.date.accessioned
2025-01-15T08:44:31Z
dc.date.available
2025-01-15T08:44:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/46247
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45959
dc.description.abstract
In topological band theory, phonon boundary modes consequence of a topologically non-trivial band structure feature desirable properties for atomically-precise technologies, such as robustness against defects, waveguiding, and one-way transport. These topological phonon boundary modes remain to be studied both theoretically and experimentally in synthetic materials, such as polymers and supramolecular assemblies at the atomistic level under thermal fluctuations. Here we show by means of molecular simulations, that surface-confined Su-Schrieffer-Heeger (SSH) phonon analogue models express robust topological phonon boundary modes at heavy boundaries and under thermal fluctuations. The resulting bulk-heavy boundary correspondence enables patterning of boundary modes in polymer chains and weakly-interacting supramolecular lattices. Moreover, we show that upon excitation of a single molecule, propagation along heavy-boundary modes differs from free boundary modes. Our work is an entry to topological vibrations in supramolecular systems, and may find applications in the patterning of phonon circuits and realization of Hall effect phonon analogues at the molecular scale.
en
dc.format.extent
14 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Molecular dynamics
en
dc.subject
Polymer chemistry
en
dc.subject
Self-assembly
en
dc.subject
Topological matter
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Heavy-boundary mode patterning and dynamics of topological phonons in polymer chains and supramolecular lattices on surfaces
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
10674
dcterms.bibliographicCitation.doi
10.1038/s41467-024-54511-8
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-54511-8
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723
refubium.resourceType.provider
WoS-Alert