We present a study on femtosecond laser treatment of amorphous hydrogen-containing carbon coatings (a-C:H). The coatings were deposited on silicon wafers by a plasma-assisted chemical vapour deposition (PA-CVD), resulting in two different types of material with distinct properties (referred to as “absorbing” and “semi-transparent” coatings in the following). The samples were laser-treated with single fs-laser pulses (800 nm center wavelength, 35 fs pulse duration) in the ablative regime. Through a multi-method approach using topometry, Raman spectroscopy, and spectroscopic imaging ellipsometry, we can identify zones and thresholds of different fluence dependent effects and have access to the local dielectric function. The two coating materials react significantly different upon laser treatment. We determined the (non-ablative) modification threshold fluence for the absorbing coating as 3.6 x 10-2 Jcm−2 and its ablation threshold as 0.22 Jcm−2. The semi-transparent coating does not show such a low-fluence modification but exhibits a characteristic interference-based intra-film ablation mechanism with two distinguishable ablation thresholds at 0.25 and 0.28 Jcm−2, respectively. The combination of tailored layer materials and correlative imaging spectroscopic methods delivers new insights into the behaviour of materials when treated with ultrashort-pulse laser radiation.