dc.contributor.author
Schebek, Maximilian
dc.contributor.author
Invernizzi, Michele
dc.contributor.author
Noé, Frank
dc.contributor.author
Rogal, Jutta
dc.date.accessioned
2024-12-04T13:20:15Z
dc.date.available
2024-12-04T13:20:15Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45857
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45570
dc.description.abstract
The accurate prediction of phase diagrams is of central importance for both the fundamental understanding of materials as well as for technological applications in material sciences. However, the computational prediction of the relative stability between phases based on their free energy is a daunting task, as traditional free energy estimators require a large amount of simulation data to obtain uncorrelated equilibrium samples over a grid of thermodynamic states. In this work, we develop deep generative machine learning models based on the Boltzmann Generator approach for entire phase diagrams, employing normalizing flows conditioned on the thermodynamic states, e.g. temperature and pressure, that they map to. By training a single normalizing flow to transform the equilibrium distribution sampled at only one reference thermodynamic state to a wide range of target temperatures and pressures, we can efficiently generate equilibrium samples across the entire phase diagram. Using a permutation-equivariant architecture allows us, thereby, to treat solid and liquid phases on the same footing. We demonstrate our approach by predicting the solid–liquid coexistence line for a Lennard-Jones system in excellent agreement with state-of-the-art free energy methods while significantly reducing the number of energy evaluations needed.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
machine learning
en
dc.subject
statistical mechanics
en
dc.subject
generative models
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
Efficient mapping of phase diagrams with conditional Boltzmann Generators
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
045045
dcterms.bibliographicCitation.doi
10.1088/2632-2153/ad849d
dcterms.bibliographicCitation.journaltitle
Machine Learning: Science and Technology
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1088/2632-2153/ad849d
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2632-2153
refubium.resourceType.provider
WoS-Alert