dc.contributor.author
Altmann, Klaus
dc.contributor.author
Witt, Frederik
dc.date.accessioned
2024-12-04T10:54:32Z
dc.date.available
2024-12-04T10:54:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45843
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45556
dc.description.abstract
For a smooth projective toric variety of Picard rank two we classify all exceptional sequences of invertible sheaves which have maximal length. In particular, we prove that unlike non-maximal sequences, they (a) remain exceptional under lexicographical reordering, (b) satisfy strong spatial constraints in the Picard lattice, and (c) are full, that is, they generate the derived category of the variety.
en
dc.format.extent
37 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
toric variety
en
dc.subject
derived category
en
dc.subject
exceptional sequence
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
The structure of exceptional sequences on toric varieties of Picard rank two
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5802/alco.371
dcterms.bibliographicCitation.journaltitle
Algebraic Combinatorics
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.pagestart
1039
dcterms.bibliographicCitation.pageend
1074
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.5802/alco.371
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2589-5486
refubium.resourceType.provider
WoS-Alert