dc.contributor.author
Hangleiter, Dominik
dc.contributor.author
Roth, Ingo
dc.contributor.author
Fuksa, Jonáš
dc.contributor.author
Eisert, Jens
dc.contributor.author
Roushan, Pedram
dc.date.accessioned
2024-11-07T13:19:51Z
dc.date.available
2024-11-07T13:19:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45606
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45318
dc.description.abstract
Precise means of characterizing analog quantum simulators are key to developing quantum simulators capable of beyond-classical computations. Here, we precisely estimate the free Hamiltonian parameters of a superconducting-qubit analog quantum simulator from measured time-series data on up to 14 qubits. To achieve this, we develop a scalable Hamiltonian learning algorithm that is robust against state-preparation and measurement (SPAM) errors and yields tomographic information about those SPAM errors. The key subroutines are a novel super-resolution technique for frequency extraction from matrix time-series, tensorESPRIT, and constrained manifold optimization. Our learning results verify the Hamiltonian dynamics on a Sycamore processor up to sub-MHz accuracy, and allow us to construct a spatial implementation error map for a grid of 27 qubits. Our results constitute an accurate implementation of a dynamical quantum simulation that is precisely characterized using a new diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.
en
dc.format.extent
12 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Quantum information
en
dc.subject
Quantum simulation
en
dc.subject
superconducting quantum processor
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Robustly learning the Hamiltonian dynamics of a superconducting quantum processor
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
9595
dcterms.bibliographicCitation.doi
10.1038/s41467-024-52629-3
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
15
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-024-52629-3
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-1723