Distractor-induced blindness (DIB) describes a reduced access to a cued visual target–if multiple target-like distractors have been presented beforehand. Previous ERP data suggest a cumulative frontal inhibition triggered by distractors, which affects the updating process of the upcoming target. In the present study, we examine whether the modality of the cue—formerly defined in the visual domain–affects the expression of these neural signatures. 27 subjects were tested in a cross-modal DIB task: Distractors and targets were defined by a transient change of stimuli shape in a random-dot kinematogram. The onset of the target was announced by a rise in amplitude of a sinusoidal tone. Behavioral results confirmed that detection of the target relies on the number of preceding distractor episodes. Replicating previous unimodal results, ERP responses to distractors were characterized by a frontal negativity starting at 100 ms, which increases with an increasing number of distractor episodes. However, the processing–and detection–of the target was not characterized by a more-expressed P3 response, but by an occipital negativity. The current data confirm that the neural signatures of target awareness depend on the experimental setup used: In case of the DIB, the cross-modal setting might lead to a reduction of attentional resources in the visual domain.