dc.contributor.author
Engel, Maximilian
dc.contributor.author
Hummel, Felix
dc.contributor.author
Kuehn, Christian
dc.contributor.author
Popović, Nikola
dc.contributor.author
Ptashnyk, Mariya
dc.contributor.author
Zacharis, Thomas
dc.date.accessioned
2024-11-06T13:36:39Z
dc.date.available
2024-11-06T13:36:39Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45565
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45277
dc.description.abstract
We study a singularly perturbed fast-slow system of two partial differential equations (PDEs) of reaction-diffusion type on a bounded domain via Galerkin discretisation. We assume that the reaction kinetics in the fast variable realise a generic fold singularity, whereas the slow variable takes the role of a dynamic bifurcation parameter, thus extending the classical analysis of the singularly perturbed fold. Our approach combines a spectral Galerkin discretisation with techniques from geometric singular perturbation theory which are applied to the resulting high-dimensional systems of ordinary differential equations. In particular, we show the existence of invariant slow manifolds in the phase space of the original system of PDEs away from the fold singularity, while the passage past the singularity of the Galerkin manifolds obtained after discretisation is described by geometric desingularisation, or blow-up. Finally, we discuss the relation between these Galerkin manifolds and the underlying slow manifolds.
en
dc.format.extent
51 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
geometric singular perturbation theory
en
dc.subject
fast-slow systems
en
dc.subject
fold singularities
en
dc.subject
reaction-diffusion equations
en
dc.subject
Galerkin discretisation
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Geometric analysis of fast-slow PDEs with fold singularities via Galerkin discretisation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
115017
dcterms.bibliographicCitation.doi
10.1088/1361-6544/ad7fc2
dcterms.bibliographicCitation.journaltitle
Nonlinearity
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.volume
37
dcterms.bibliographicCitation.url
https://doi.org/10.1088/1361-6544/ad7fc2
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1361-6544
refubium.resourceType.provider
WoS-Alert