dc.contributor.author
Rütten, Lisa M.
dc.contributor.author
Schmid, Harald
dc.contributor.author
Liebhaber, Eva
dc.contributor.author
Franceschi, Giada
dc.contributor.author
Yazdani, Ali
dc.contributor.author
Reecht, Gaël
dc.contributor.author
Rossnagel, Kai
dc.contributor.author
Oppen, Felix von
dc.contributor.author
Franke, Katharina J.
dc.date.accessioned
2024-11-07T12:56:10Z
dc.date.available
2024-11-07T12:56:10Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/45434
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-45146
dc.description.abstract
Magnetic adatoms on superconductors give rise to Yu-Shiba-Rusinov (YSR) states that hold considerable interest for the design of topological superconductivity. Here, we show that YSR states are also an ideal platform to engineer structures with intricate wave function symmetries. We assemble structures of iron atoms on the quasi-two-dimensional superconductor 2H-NbSe2. The Yu-Shiba-Rusinov wave functions of individual atoms extend over several nanometers enabling hybridization even at large adatom spacing. We show that the substrate can be exploited to deliberately break symmetries of the adatom structure leading to hybridized YSR states exhibiting symmetries that cannot be found in orbitals of iso-structural planar molecules in the gas phase. We exploit this potential by designing chiral YSR wave functions of triangular adatom structures. Our results significantly expand the range of interesting quantum states that can be engineered using arrays of magnetic adatoms on superconductors.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Yu-Shiba-Rusinov states
en
dc.subject
superconductivity
en
dc.subject
niobium diselenide
en
dc.subject
scanning tunneling microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Wave Function Engineering on Superconducting Substrates: Chiral Yu-Shiba-Rusinov Molecules
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acsnano.4c10998
dcterms.bibliographicCitation.journaltitle
ACS Nano
dcterms.bibliographicCitation.number
44
dcterms.bibliographicCitation.pagestart
30798
dcterms.bibliographicCitation.pageend
30804
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acsnano.4c10998
refubium.affiliation
Physik
refubium.affiliation.other
Dahlem Center für komplexe Quantensysteme
refubium.funding
ACS Publications
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1936-086X