In the current anthropogenic era characterised by human-induced environmental changes, long-term biomonitoring has become a crucial component for understanding ecological patterns and detecting shifts in biodiversity. However, spatiotemporal inconsistencies in biomonitoring efforts hinder transboundary progress in understanding and mitigating global environmental change effectively. The International Long-Term Ecosystem Research (ILTER) network is one of the largest standardised biomonitoring initiatives worldwide, encompassing 44 countries globally, including 26 European countries that are part of the European Long-Term Ecosystem Research network (eLTER). To better understand the establishment and development of such long-term biomonitoring efforts, we analysed spatial and temporal trends within the eLTER network. Additionally, we evaluated the environmental, social, and economic factors influencing engagement in biomonitoring activities within this European network. Our findings reveal a spatial imbalance, with biomonitoring efforts concentrated in Central and Western European countries, where monitoring initiatives have typically been established for a longer duration. Furthermore, our analyses underscore the complex interplay of economic, geographic, and cultural factors in the development of long-term ecological research infrastructures. Countries with greater geographic connectivity, slower economic growth, and higher research activity are more likely to be involved in the eLTER network. The intensity of biomonitoring significantly increased with greater research investments, economic growth, and elevated levels of tourism. In contrast, it decreased in countries that are more inward-facing and exhibit a belief in their ability to control environmental outcomes independently. Addressing spatial gaps in monitoring necessitates enhanced support and funding to ensure comprehensive ecological monitoring over extended time periods. This is essential for achieving transboundary sustainability and effective biodiversity conservation in the face of global change drivers.