dc.contributor.author
Staiger, Manuel
dc.date.accessioned
2024-09-05T07:30:12Z
dc.date.available
2024-09-05T07:30:12Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/44796
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-44506
dc.description.abstract
We answer a question of Bardakov (Kourovka Notebook, Problem 19.8) which asks for the existence of a pair of natural numbers (c, c, m ) with the property that every element in the free group on the two-element set { a, b } can be represented as a concatenation of c , or fewer, m-almost-palindromes in letters a +/- 1, +/- 1 , b +/- 1 . Here, an m-almost-palindrome is a word which can be obtained from a palindrome by changing at most m letters. We show that no such pair (c, c, m ) exists. In fact, we show that the analogous result holds for all non-abelian free groups.
en
dc.format.extent
7 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Palindromic width
en
dc.subject
Almost-palindromic width
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
On the almost-palindromic width of free groups
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1016/j.jalgebra.2024.07.008
dcterms.bibliographicCitation.journaltitle
Journal of Algebra
dcterms.bibliographicCitation.pagestart
475
dcterms.bibliographicCitation.pageend
481
dcterms.bibliographicCitation.volume
659
dcterms.bibliographicCitation.url
https://doi.org/10.1016/j.jalgebra.2024.07.008
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1090-266X
refubium.resourceType.provider
WoS-Alert