Additive manufacturing has evolved at such a level nowadays that it follows the sustainability pathways, from applied materials to processing costs. This is a fundamental reason that more and more scientific effort is devoted to incorporating this technology in different research fields. Implementation of 3D printing technology in flow biocatalysis can be addressed at every process design level, (i) either the reactor itself, (ii) the support material for biocatalyst confinement, or (iii) the peripheral accessories that can establish a highly controlled process. 3D printing is an attractive option for enabling the development of more efficient processes, along with facile performance optimization. Moreover, the 3D printing of a biocatalyst entrapped in a protecting scaffold offers an alternative immobilization approach with promising results for a cost-effective and green process design.