dc.contributor.author
Eiter, Thomas
dc.contributor.author
Lasarzik, Robert
dc.date.accessioned
2024-06-20T11:48:58Z
dc.date.available
2024-06-20T11:48:58Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43906
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43616
dc.description.abstract
We introduce the concept of energy-variational solutions for hyperbolic conservation laws. Intrinsically, these energy-variational solutions fulfill the weak-strong uniqueness principle and the semi-flow property, and the set of solutions is convex and weakly-star closed. The existence of energy-variational solutions is proven via a suitable time-discretization scheme under certain assumptions. This general result yields existence of energy-variational solutions to the magnetohydrodynamical equations for ideal incompressible fluids and to the Euler equations in both the incompressible and the compressible case. Moreover, we show that energy-variational solutions to the Euler equations coincide with dissipative weak solutions.
en
dc.format.extent
40 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
energy-variational solutions
en
dc.subject
hyperbolic conservation laws
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
Existence of energy-variational solutions to hyperbolic conservation laws
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
103
dcterms.bibliographicCitation.doi
10.1007/s00526-024-02713-9
dcterms.bibliographicCitation.journaltitle
Calculus of Variations and Partial Differential Equations
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
63
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00526-024-02713-9
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1432-0835
refubium.resourceType.provider
WoS-Alert