dc.contributor.author
Huang, Zhaolan
dc.contributor.author
Zandberg, Koen
dc.contributor.author
Schleiser, Kaspar
dc.contributor.author
Baccelli, Emmanuel
dc.date.accessioned
2025-03-27T08:48:07Z
dc.date.available
2025-03-27T08:48:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43727
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43442
dc.description.abstract
Practitioners in the field of TinyML lack so far a comprehensive, “batteries-included” toolkit to streamline continuous integration, continuous deployment and performance assessments of executing diverse machine learning models on various low-power IoT hardware. Addressing this gap, our paper introduces RIOT-ML, a versatile toolkit crafted to assist IoT designers and researchers in these tasks. To this end, we designed RIOT-ML based on an integration of an array of functionalities from a low-power embedded OS, a universal model transpiler and compiler, a toolkit for TinyML performance measurement, and a low-power over-the-air secure update framework—all of which usable on an open-access IoT testbed available to the community. Our open-source implementation of RIOT-ML and the initial experiments we report on showcase its utility in experimentally evaluating TinyML model performance across fleets of low-power IoT boards under test in the field, featuring a wide spectrum of heterogeneous microcontroller architectures and fleet network connectivity configurations. The existence of an open-source toolkit such as RIOT-ML is essential to expedite research combining artificial intelligence and IoT and to foster the full realization of edge computing’s potential.
en
dc.format.extent
15 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Machine learning
en
dc.subject
Microcontroller
en
dc.subject
Software update
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.title
RIOT-ML: toolkit for over-the-air secure updates and performance evaluation of TinyML models
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1007/s12243-024-01041-5
dcterms.bibliographicCitation.journaltitle
Annals of Telecommunications
dcterms.bibliographicCitation.number
3-4
dcterms.bibliographicCitation.pagestart
283
dcterms.bibliographicCitation.pageend
297
dcterms.bibliographicCitation.volume
80
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s12243-024-01041-5
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Informatik

refubium.funding
Springer Nature DEAL
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1958-9395