dc.contributor.author
Duwiquet, H.
dc.contributor.author
Genter, A.
dc.contributor.author
Guillou-Frottier, L.
dc.contributor.author
Donzé, F. V.
dc.contributor.author
Ledru, P.
dc.contributor.author
Magri, Fabien
dc.contributor.author
Guillon, T.
dc.contributor.author
Horne, R. N.
dc.contributor.author
Arbaret, L.
dc.contributor.author
Souque, C.
dc.date.accessioned
2024-05-21T12:10:17Z
dc.date.available
2024-05-21T12:10:17Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/43640
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-43355
dc.description.abstract
Fault zones exhibit 3D variable thickness, a feature that remains inadequately explored, particularly with regard to the impact on fluid flow. Upon analyzing an analytic solution, we examine 3D thermal-hydraulic (TH) dynamical models through a benchmark experiment, which incorporates a fault zone with thickness variations corresponding to realistic orders of magnitude. The findings emphasize an area of interest where vigorous convection drives fluid flow, resulting in a temperature increase to 150°C at a shallow depth of 2.7 km in the thickest sections of the fault zone. Moreover, by considering various tectonic regimes (compressional, extensional, and strike-slip) within 3D thermal-hydraulic-mechanical (THM) models and comparing them to the benchmark experiment, we observe variations in fluid pressure induced by poroelastic forces acting on fluid flow within the area of interest. These tectonic-induced pressure changes influence the thermal distribution of the region and the intensity of temperature anomalies. Outcomes of this study emphasize the impact of poroelasticity-driven forces on transfer processes and highlight the importance of addressing fault geometry as a crucial parameter in future investigations of fluid flow in fractured systems. Such research has relevant applications in geothermal energy, CO2 storage, and mineral deposits.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
varying thicknesses
en
dc.subject
thermal convection
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
dc.title
Advanced 3D TH and THM Modeling to Shed Light on Thermal Convection in Fault Zones With Varying Thicknesses
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e2023JB028205
dcterms.bibliographicCitation.doi
10.1029/2023JB028205
dcterms.bibliographicCitation.journaltitle
Journal of Geophysical Research: Solid Earth
dcterms.bibliographicCitation.number
4
dcterms.bibliographicCitation.volume
129
dcterms.bibliographicCitation.url
https://doi.org/10.1029/2023JB028205
refubium.affiliation
Geowissenschaften
refubium.affiliation.other
Institut für Geologische Wissenschaften / Fachrichtung Geochemie, Hydrogeologie, Mineralogie

refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2169-9356
refubium.resourceType.provider
WoS-Alert